Interdisciplinary Research for Sustainable Energy and Process Technologies

Michael Schütze

Mechanical Limits to the Protective Effect of Oxide Scales on High Temperature Materials

Materials Chemical Engineering Biotechnology

www.dechema-dfi.de

Frankfurt am Main, Germany

Role of Scale Thickness

d = scale thickness

material properties constants

 $fE\sqrt{\pi c_0}$

	tension	compression
<u>interfacial</u> cracking / beginning of exfoliation	$\eta^{\rm if} = \frac{K_{Ic}(1+\nu)}{2fE\sqrt{\pi c_0}}$	$\eta^{\text{if-}} = -\frac{K_{Ic}(1+\nu)}{2fE\sqrt{\pi c_0}}$
<u>through</u> creaking (spalling	$\eta^{t} = \frac{K_{Ic}}{fE\sqrt{\pi c_{0}}}$	$\eta^{sh} = -\frac{K_{Ic}\sqrt{3}}{fE\sqrt{\pi c_0}}$

cracking / spalling

c – defect size, $c_0 - 1\mu m$ for normalizing, E – scale Young's modulus, f – defect geometry factor, r – interface roughness, ν – Poisson ratio, K_{Ic} – scale fracture toughness

η^i as a materials constant for the mechanical oxide properties (E, K_c, v)

Further reading in M. Schütze, P. Tortorelli, I. Wright, Oxid. Met. 2010

Failure Strain as a Function of Geometrical Dimensions and Mechanical Oxide Properties

Mechanical properties parameters summarized in η

Geometrical dimension parameters summarized in ω

Highest variable impact from defect size c

η as a combined factor for the mechanical properties

Influence of the environment on the mechanical properties

Influence of the environment on the mechanical properties

Quantitative assessment of failure strain without mechanical test

Results from Model Calculations

Results from Model Calculations

Experimental Data

Experimental Determination of η from $\epsilon_{\rm c}$ vs. c

Experimental determination of η

Ti-Oxide, 800°C and 900°C

Fe-Oxide, 550°C, 650°C and 860°C

Ni-Oxide, 800°C and 900°C

Still under Work:

 AI_2O_3 Cr_2O_3

Summary

Characteristics of the η – c – approach :

- Mechanical properties of oxide scales can be summarized quantitatively by the parameter $\boldsymbol{\eta}$
- Geometrical situation dominated by the parameter c
- Prediction of ϵ_c without mechanical testing once η is known
- Interesting potential for quantitative characterisation of the mechanical properties of surface oxide scales on high temperature materials and their mechanical limits

