

Sicherheit in Technik und Chemie

HELSMAC- Cambridge, UK

# A FEW ASPECTS OF THE CURRENT UNDERSTANDING OF DPF MATERIALS THERMAL AND MECHANICAL PROPERTIES

Giovanni Bruno

BAM-8.5 "Micro NdT", Berlin, Germany

#### Alexander M. Efremov, Andrey N. Levandovskyi

Corning Incorporated, St.Petersburg, Russia

Mark L.Kachanov

Tufts University, Medford, MA, USA

#### Sven Vogel, Bjørn Clausen

Lujan Center, LANL, Los Alamos, NM, USA

Darren J.Hughes Warwick University, Coventry, UK



# **BAM guideline and mission**



Safety in technology and chemistry

Pursuing our mission as a Federal institute for materials technology and chemical engineering, we ensure ongoing safety in technology and chemistry through

- research and development
- testing, analysis, approval and certification
- consultation, information and advice

within our objective of promoting German (and EU) industrial development.



# **Porous Ceramics in Industry**

#### **Applications as**

- Filters (mobile/ stationary)
- Membranes
- Substrates for catalyzers

#### **Typical materials**

- Cordierite
- Silicon Carbide
- Aluminum Titanate
- β-Eucryptite

#### **Typical Characteristics**

- Low thermal expansion (not all)
- Microcracking (not all)
- High permeability
- High thermal shock resistance
- Strain tolerance







# **Porous Ceramic Filters**

Main attributes

- Filtration efficiency
- Pressure drop \_
- Resistance to crack initiation -
- Operation at high temperatures





4









Microstructure

Mechanical behavior

Thermal behavior

Microstructure and Thermal Properties

## **DPF Ceramics:**



#### Thermal expansion

4500



# **DPF Ceramics:**

## **Mechanical Properties**



### Young's Modulus



Microcracking often occurs because of lattice thermal expansion anisotropy (NB: low crystal symmetry ceramics)

Hysteresis of dilation and Young's modulus vs T: thermal microcracking

# Non-linear stress-strain behavior



## Mechanical microcracking





Very visible in microcracked materials, present in nonmicrocracked







## Mechanical behavior and its modeling

Thermal behavior and its modeling Microstructural aspects

## **Stress-strain curves**







# New constitutive laws for porous and microcracked ceramics





- Stress Modeling needs to take the dynamic behavior into account
- Operating conditions cannot be described by static properties
- Mechanical microcracks are irreversible and cannot be closed by load release: they are <u>directional</u> and larger



# **Mechanical Properties Summary**



- **New relations** between macro and micro stress and strain for porous materials
- Microcracking induces a viscous behavior (stress-strain curves become time dependent)
- At least two parameters are needed to describe the *E vs. p*
- Differential model yields microcrack density (agreement with Eshelby approach on Emod vs T data): microcrack sliding is extremely important
- Diffraction Young's modulus rescales with porosity





## Mechanical behavior and its modeling

## Thermal behavior and its modeling

Microstructural aspects

# Thermal expansion of Aluminum Titanate **S** BAM

CORNING





# Lattice expansion and Texture of AT





0.359 nm

**Integrity Factor model** (Efremov, Phil Mag., 2013) AT macroscopic axial CTE simulation



# Modeling





- At all temperatures the *c*-axis remains attached to the body and is under **compression**
- Even at high temperatures the *b*-axis must be disconnected
- At RT, the c-axis is under compression, the others are under tension



## **Thermal Properties Summary**



- Mechanical and thermal microcracks have different orientations
- Aluminum titanate behaves highly anisotropically: internal microstresses
- The **Integrity Factor Model** can rationalize the high-temperature behavior of Thermal Expansion and calculate stresses





Mechanical behavior and its modeling Thermal behavior and its modeling

Microstructural aspects

## Pore orientation by means of Computed Tomography





GE v|tome|x Pixel size ~ 4 mm



BAMLine, BESSY, Berlin, Germany Pixel size ~ 0.4 mm

## **Results- CT reconstructions**





Laboratory CT Data



Cordierite samples



Synchrotron CT Data



**S2** 



**S1** 

**S2** 

## **CT Data Analysis: DIVA**





 Calculation of the Variance of Gradients



- Orientation parameter  $O_{\rm D}$  by ratio of max to min variance



Morphology and crystal orientations coincide



## **Microstructure Summary**

• **Morphological and crystallographic** orientations are the same in cordierite

- High resolution CT yields more complete information, yet not substantially different
- Integral information is as valuable as local one

## Conclusions



- DPF (complex) materials need high resolution techniques at multiscale levels
  - One technique (or even a few techniques) is not enough
  - Do not forget the MACRO scale
- Neutrons (and Synchrotrons) are very powerful tools, yet
  - ONLY in combination with others
  - In-situ is a MUST
- Modeling is necessary to capitalize experimental data

## Questions = Interest