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Classification Attempt of TPS Systems 
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Classification Attempt of TPS Systems 
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Classification Attempt of TPS Systems 
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LDSD IRDT 

Deployable systems for long term 
missions (Mars) and heavy masses 
Contour changing systems 
 
LDSD = Low Density  
Supersonic Decelerator  
(NASA, Test 2014) 
IRDT = Inflatable Re-entry  
Demonstrator  
(ESA/Astrium, several  
tests 2000, 2002, 2005) 



Topics 
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Ceramic Matrix Composites as thermal protection materials 
Ultra High Temperature Ceramic Matrix Composites 
High thermal conductive composites 

Applications 
Conclusions and Outlook 
 



Amount of heat generated in re-entry 
depends on the vehicle shape 
Heat load increases with decreasing nose 
curvature radius 
The minimum radius is limited by available 
materials 
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factor 

Nose radius Actual density 
normalised with 
sea level density 
= altitude term 

Actual velocity 
normalised with 
orbital velocity = 
speed term 

Apollo 

Shuttle nose 

The reason for blunt body re-entry shapes 
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SHEFEX II 



Vision of Hypersonic Cruise  
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From: Gasch et al. , Handbook of Ceramic Composites, 2005, pp. 197–224 

SHEFEX III 
Twin cone 
Body/wing 

Source: NASA, X43 

Spaceliner 

Shefex II 

more efficient 

more flexible 



Vision of Hypersonic Cruise  
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HfB2 
(3400°C) 

HfC 
(3900°C) 

TaC 
(3800°C) 

ZrB2 
(3400°C) 

… 

From: Gasch et al. , Handbook of Ceramic Composites, 2005, pp. 197–224 



Ultra High Temperature stable CMC – UHTCMC  
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UHTC 
Low fracture 
toughness 

UHTCMC 
keep promising properties  

enhance fracture 
toughness by fiber reinforcement 



Processing of UHTCMC 
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Manufacturing of  
porous fiber preform 
Reactive Melt Infiltration RMI 
via capillary forces 
reduced processing temperature  
without mechanical pressure 
good formation of ZrB2  
in between fiber bundles 
to achieve low porosity 

U
H

TC
M

C
 

Exothermal Reaction 
B+Zr  ZrB2 

Melt 



Processing of monolithic ZrB2 
by RMI 
Use of thermo softening 
plastic (TP), Polycarbosilane 
(PCS), Depleted phenolic (PFA) 
Fiber reinforced ZrB2 by RMI 
Slurry Infiltration of Boron in 
SiC fiber with adapted porosity 
C fiber coating as protection 
against Zr melt 

Development Stages 
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SiC(f)/ZrB2+ZrC 

Cf-TiB2/ZrB2-ZrC 

ZrB2 



Cf-TiB2/ZrB2-ZrC 
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Carbon fiber with TiB2 coating withstand Zr melt infiltration 

Phase Cf TiB2 ZrB2 ZrC Residual 
melt ∑UHTC Porosity 

Vol% 38 14 19 13 11 47 5 

-ZrB2-ZrC 

Cf-TiB2 
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Applications 



CMC material provides for clean flight 
environment 
Platform for 4 experiments 
Technology demonstration for complex CMC 
structures with joints 

EXPERT TPS CMC Nose by DLR 
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Optimised aerodynamics in hypersonic regime with 
low drag and increased lift  
Mission flexibility due to greatly increased crossrange 
Low angle of attack and defined shock position for 
reduced black-out times 
Cost reduction for TPS elements due to facetted shape 
with flat panels Classic way to go: high angle of attack 

Optimised way: low angle of attack 

SHEFEX I 

SHEFEX – Sharp Edge Flight Experiment 
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CMC panels on CMC load introductions 
Lightweight dedicated insulation 
Focus on serial production aspects 

Segmented CMC TPS for SHEFEX II 
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Launch 22 June 2012,  
Andoya, Norway 
Trajectory deviation < 1% 
Flight manoeuvers successful 
High quality experimental data 
Mach 10 resp.  
2.8 km/s top velocity 

SHEFEX II Successful Flight Testing 
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Conclusions 
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Various TPS are available for specific applications 
New vehicle designs (sharp edges, hypersonic cruisers) 
need improved TPS 
Current activities focus on UHTC and UHTCMC based TPS 
for even higher thermal loading and long term use  
 

Outlook 
Development of highly efficient ablator systems with low 
density  
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Thank you or your attention 
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