High Temperature Stable Fibre Reinforced Composites for Thermal Protection of Spacecraft Vehicles

Dietmar Koch Thomas Reimer, Marius Kütemeyer, Hannah Böhrk

Knowledge for Tomorrow

Institute of Structures and Design, Stuttgart DLR – German Aerospace Center

TPS

Classification Attempt of TPS Systems

X-33

Classification Attempt of TPS Systems

Classification Attempt of TPS Systems

- Deployable systems for long term missions (Mars) and heavy masses
- Contour changing systems
- LDSD = Low Density
 Supersonic Decelerator
 (NASA, Test 2014)
- IRDT = Inflatable Re-entry Demonstrator (ESA/Astrium, several tests 2000, 2002, 2005)

Topics

- Ceramic Matrix Composites as thermal protection materials
 - Ultra High Temperature Ceramic Matrix Composites
 - High thermal conductive composites
- Applications
- Conclusions and Outlook

factor

Actual velocity normalised with

orbital velocity =

speed term

 $\dot{q} = \frac{a}{\sqrt{R_n}} \left(\frac{\rho_{\infty}}{\rho_{sl}}\right)^{0,5} \left(\frac{U_{\infty}}{U_{co}}\right)^{3,15}$

The reason for blunt body re-entry shapes

- Amount of heat generated in re-entry depends on the vehicle shape
- Heat load increases with decreasing nose curvature radius
- The minimum radius is limited by available materials

Vision of Hypersonic Cruise

From: Gasch et al., Handbook of Ceramic Composites, 2005, pp. 197–224

From: Gasch et al., Handbook of Ceramic Composites, 2005, pp. 197–224

Ultra High Temperature stable CMC – UHTCMC

UHTC Low fracture toughness

UHTCMC keep promising properties enhance fracture toughness by fiber reinforcement

Processing of UHTCMC

- Manufacturing of porous fiber preform
- Reactive Melt Infiltration RMI via capillary forces
- reduced processing temperature without mechanical pressure
- good formation of ZrB2
 in between fiber bundles
 to achieve low porosity

Development Stages

- Processing of monolithic ZrB2
 by RMI
 Use of thermo softening
 plastic (TP), Polycarbosilane
 (PCS), Depleted phenolic (PFA)
- Fiber reinforced ZrB2 by RMI
 Slurry Infiltration of Boron in
 SiC fiber with adapted porosity
- C fiber coating as protection against Zr melt

C_{f-TiB2}/ZrB₂-ZrC

Carbon fiber with TiB₂ coating withstand Zr melt infiltration

Phase	C _f	TiB2	ZrB2	ZrC	Residual melt	Συητς	Porosity
Vol%	38	14	19	13	11	47	5
DLR			AN	and the second sec			

www.DLR.de • Chart 13 High Temperature Stable Fibre Reinforced Composites for Thermal Protection of Spacecraft Vehicles > HELSMAC 7-8th April 2016

Applications

EXPERT TPS CMC Nose by DLR

- CMC material provides for clean flight environment
- Platform for 4 experiments
- Technology demonstration for complex CMC structures with joints

SHEFEX – Sharp Edge Flight Experiment

- Optimised aerodynamics in hypersonic regime with low drag and increased lift
- Mission flexibility due to greatly increased crossrange
- Low angle of attack and defined shock position for reduced black-out times
- Cost reduction for TPS elements due to facetted shape with flat panels

Classic way to go: high angle of attack

Optimised way: low angle of attack

Segmented CMC TPS for SHEFEX II

- CMC panels on CMC load introductions
- Lightweight dedicated insulation
- Focus on serial production aspects

SHEFEX II Successful Flight Testing

- Launch 22 June 2012, Andoya, Norway
- Trajectory deviation < 1%</p>
- Flight manoeuvers successful
- High quality experimental data
- Mach 10 resp.2.8 km/s top velocity

Conclusions

- Various TPS are available for specific applications
- New vehicle designs (sharp edges, hypersonic cruisers) need improved TPS
- Current activities focus on UHTC and UHTCMC based TPS for even higher thermal loading and long term use

Outlook

Development of highly efficient ablator systems with low density

www.DLR.de • Chart 19 High Temperature Stable Fibre Reinforced Con

2xamb and

Thank you or your attention

 $\mathcal{M} \subseteq \mathcal{M}$

High Temperature Stable Fibre Reinforced Composites for Thermal Protection of Spacecraft Vehicles

Dietmar Koch Thomas Reimer, Marius Kütemeyer, Hannah Böhrk

Knowledge for Tomorrow

Institute of Structures and Design, Stuttgart DLR – German Aerospace Center

