

Beyond Ni-base Superalloys: Refractory Metal Silicides for Ultrahigh Temperature Structural Applications

M. Heilmaier, F. Gang, D. Schliephake

Institute for Applied Materials IAM–WK

http://ec.europa.eu/research/transport/projects/items/ultmat_en.htm

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- Motivation for novel RM based high temperature alloys
 - Main Advantage: High Melting Points beyond 2000°C
 - Main (Scientific) Issues: Creep, Oxidation, Density
 - Further Issues: Fatigue, Fracture Toughness, Crack Propagation,

Manufacturing, ...tbc

- Case study 1: Mo-Si-B(-Ti) alloys
- Case study 2: Nb-Si(-Cr-V) eutectics
- Conclusions

2

Acknowledgements

Refractory metal silicides: creep resistance potential

IAM Institute for Applied Materials

M. Heilmaier - Beyond Ni-base Superalloys: Refractory Metal Silicides for Ultrahigh Temperature Structural Applications

Outline

- Motivation on high temperature alloys
 - Main (Scientific) Issues: Creep, Oxidation, Density

- \rightarrow Outstanding creep resistance
- \rightarrow What about oxidation resistance and density?

- \rightarrow Protection due to formation of Borosilicate glass layer
- \rightarrow dependent on (i) amount of intermetallics and (ii) microstructural fineness

The Binary Nb-Si System

→ Isothermal high temperature oxidation: linear weight gain, no protection

Case study 1: The Mo-Si-B(-Ti) Alloy System

7

28.04.2016

Background: Mo-Si-B ternary phase diagram

Why Titanium Alloying in Mo-Si-B Alloys?

Oxidation resistance of monolithic Mo(Ti)₅Si₃ (= Mo-37Si-40Ti)

Arc-melted and heat treated 1600°C/100h, oxidation in air

- \rightarrow weight gain (indicating full protection) even in the pesting regime due to
- \rightarrow formation of a duplex oxide layer with $SiO_2\ matrix$

28.04.2016 M. Heilmaier - Beyond Ni-base Superalloys: Refractory Metal Silicides for Ultrahigh Temperature Structural Applications

Multiphase Mo-Si-B-Ti Alloys

- Alloys were arc-melted and homogenized at 1500°C/20h
- Reduction in density to values < 8 g/cm³

Microstructure of Alloys
Mo-12.5Si-8.5B-27.5Ti [at.%]
ρ = 7.7 g/cm³

Oxidation in Air

Still low temperature pesting, no continuous SiO₂ scale formed!

Si+B pack cementation on Mo-Si-B-Ti alloy (see e.g. Perepezko, Annu. Rev. Mater. Res. 2015)

- Substrate material Mo-12,5Si-8,5B-27,5Ti homogenized at 1600 °C for 100 h
- Pack-cementation:
 - 70 wt.% Al₂O₃ + 25 wt.% Si+B + 5 wt.% NaF
 - Co-deposition of Si and B at 1000°C for 40 h
 - Conditioning at 1400°C for 10 h

Test parameters:

Temperature in °C	Oxidation Mode	Time sample A in h	Time sample B in h	Time sample C in h
800	Thermal cycling	500	1000	1000
1100	Isothermal	100	100	
	Thermal cycling	250	500	500
1200	Isothermal	100	100	
	Thermal cycling	250	500	500

Layer Arrangement after Conditioning

- Layer consists of:
 - 1) Borosilicate with Al_2O_3 and TiO_2 particles
 - 2) MoSi₂ with probably MoB particles
 - 3) Ti_5Si_3 layer with $MoSi_2$ and Mo_5Si_3 particles
- Cracks and pores filled by Borosilicate

Layer Surface after Conditioning

- TiO₂ particles in plate-like shape on borosilicate layer (marked by white arrows)
- Some cavities found as surface defects (red arrow)

Isothermal Oxidation (TGA)

Cyclic Oxidation

- 800 °C initial small weight loss due to small surface defects but passivation after 100 h
- 1100 and 1200 °C weight gain
- Very little weight change up to 1000 h

Case Study 2: Nb-Si-Cr(-V) eutectics

Ternary Eutectic in Nb-Si-Cr

Partial liquidus projection of the system Nb-Si-Cr [Bewlay et al, [2009]

→ Nb-Si-Cr system shows ternary eutectic consisting of $(Nb)_{ss}$, Nb₉SiCr₄ & Cr₂Nb: desirable for directional solidification (DS)

 \rightarrow Cr₂Nb enables the formation of the better protective oxide NbCrO₄

Density 7.7 g/cm³!

28.04.2016 M. Heilmaier - Beyond Ni-base Superalloys: Refractory Metal Silicides for Ultrahigh Temperature Structural Applications

But: still linear oxidation, spallation needs to be avoided \rightarrow no protection by scale formation!

0						
alloy composition	k _l / mg*cm⁻²*h⁻¹		phase fraction Cr ₂ Nb / %		n	
	800 °C	1200 °C				
Nb-18Si	80.4	20.0				
Nb-8.66Si-33.15Cr	0.018	0.18		32.7 ± 7.6		
Nb-10.9Si-28.4Cr	0.054	0.21		17.7 ± 4.9		

1200 °C, 100 h

20 28.04.2016

M. Heilmaier - Beyond Ni-base Superalloys: Refractory Metal Silicides for Ultrahigh Temperature Structural Applications

Influence of Vanadium on oxidation resistance of Nb-Si-Cr eutectics

J.L. Waring, R.S.Roth, Phase equilibria in the system Vanadium Oxide-Niobium Oxide, J. of Research of the National Bureau of Standards – A. Physics and Chemistry Vol. 69A, No.2 (1963), p. 119 - 129

Binary Nb-V system: \rightarrow formation of the den

→ formation of the dense, adherent oxide $V_2O_5 \cdot 9Nb_2O_5$ in the designated compositional range

Combined effect of V and Cr on oxidation resistance

Nb10.9Si28.4Cr4.86V, 800 °C

→ Nb10.9Si28.4Cr4.86V (Nb:V ratio = 11.5:1)

 $k_{p} = 0.04 \text{ mg}^{2} \text{cm}^{4} \text{h}^{-1}$

phaseareal fraction / %(Nb) 18.8 ± 1.9 (14.6) Cr_2Nb 20.8 ± 1.6 (17.7)Nb_9SiCr_4 60.4 ± 3.2 (67.7)

V evenly distributed in all three phases (EDS)

→ weight gain following a parabolic rate law!
→ scale formation needs to be clarified, but no spallation!

Conclusions

- 1. Creep Resistance in both alloy systems is found superior to Ni-base superalloys even without utilizing processes such as DS or SX
- Weight/density can be favorably low in both alloy systems, i.e. < 8 g/cm³ without sacrificing other properties
- 3. Oxidation resistance:
 - o Nb-silicides:
 - Alloying with Cr decreases oxidation rate constant, but does not supress spallation and oxide cracking
 - V supresses spallation
 - A combination of Cr and V leads to parabolic oxidation rate constant at 800°C, indicates sufficient protection
 - Mo-silicides:
 - Pesting at intermediate T cannot be avoided due to slow kinetics of borosilicate glass formation
 - Pack cementation leads to virtually full protection with very low weight changes and exhibits self-healing capcity

Acknowledgements

- financial funding by DFG (Deutsche Forschungsgemeinschaft)
- E.P. George (formerly Oak Ridge National Laboratory, USA) for help with ingot metallurgy on Nb-18Si
- M. Palm and F. Stein (MPIE Düsseldorf, Germany) for fruitful discussions on ternary eutectics
- B. Gorr and H.J. Christ (University Siegen), J. Perepezko (Univ. Madison, USA) for cooperation within the Mo-Si-B-Ti project

Thank you very much for your attention!