

Recent CMAS related activities at IEK-1

Daniel E. Mack, O. Helle, M. Mutter, R. Vaßen, O. Guillon Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich GmbH, Germany

PROVIDA Meeting, April 1st, 2015, Cambridge, UK

Summary of Interests

- Materials synthesis and processing for advanced (thermally sprayed) TBC systems
- Corrosion gradient burner rig testing
- TBC degradation under simultaneous load
 - Degradation of structural integrity
 - Impact of microstructure
 - Impact of cycling frequency and deposition rate
 - Impact of chemistry , mitigation in advanced ceramics
- Development of CMAS tolerant TBC systems

Burner Rig Testing

Thermomechanical cycling

- Natural gas / oxygen burner
- Compressed air cooling (backside & front)
- Cyclic heating & cooling

Typical lifetime w/o CMAS deposit for advanced YSZ TBC

- >2000 cycles at T_{surface} = 1250°C
- >800 cycles at T_{surface} = 1400°C
 with T_{bondcoat} ≈1080°C and
 5min heating, 2min cooling

CMAS Burner Rig Testing

Thermomechanical cycling

- Natural gas / oxygen burner
- Compressed air cooling (backside & front)
- Cyclic heating & cooling

Continuous deposition simulated as during engine operation

- CMAS solution directly injected and atomized into the burner flame
- Orange discoloration visible (alkalides)

Variation of Load Conditions

A number of parameters to be controlled ...

- Surface temperature
- Temperature gradient
- High temperature dwell time
- Cycling frequency
- CMAS composition
- Feeding rate

- ... to influence
 - Melting, viscosity of deposit
 - Reaction kinetics
 - Phase formation
 - Thermomechanical stresses
 - Crack formation and growth
 - Oxidation, sintering

CMAS Arrest & Mitigation Advanced TBC and Plant Deposits

Na

1

0

Κ

1

0

Si

50

13

Fe

1

43

Slide 6 © Forschungszentrum Jülich GmbH

Gradient Rig CMAS Invasion: APS

<u>Test conditions:</u> T_{surface}: 1250°C Deposit: "CMAS" Rate: 0,12mg/min Dwell time: 1x (5/2)

Cycles to failure \approx 160 cycles Time to failure \approx 13,3 hours

- Top-down infiltration of porosity (along large cracks)
- Dissolution /Re-precipitation of YSZ
- Sparse invasion (preferred in large voids)

Gradient Rig CMAS Invasion: APS

<u>Test conditions:</u> T_{surface}: 1250°C Deposit: "CMAS" Rate: 0,12mg/min Dwell time: 1x (5/2)

Cycles to failure \approx 160 cyclesTime to failure \approx 13,3 hours

- Top-down infiltration of porosity (along large cracks)
- Dissolution/Re-precipitation of YSZ
- Sparse invasion (preferred in large voids)

Gradient Rig CMAS Invasion: APS

Test conditions: T_{surface}: 1250°C Deposit: "CMAS" Rate: 0,12mg/min Dwell time: 1x (5/2)

Cycles to failure \approx 160 cyclesTime to failure \approx 13,3 hours

- Top-down infiltration of porosity (along large cracks)
- Dissolution/Re-precipitation of YSZ
- Sparse invasion (preferred in large voids)

Impact of Different Dwell Times

State of the art YSZ TBC

- Test conditions:
 - *T_{surface}* : 1250°C
 - Deposit: "CMAS"
 - Deposition rate: 0,45mg/min
 - Dwell times:
 - 1x (5/2) 5x (25/10) 10x (50/20)
- Degradation of TBC with flake like defoliation as often observed with CMAS

Non-Cyclic Loading

- State of the art YSZ TBC
- Test conditions:
 - *T_{surface}* : 1250°C
 - Deposit: "CMAS"
 - Deposition rate: 0,5 mg/min)
 - Dwell time: unlimited (only accidential interrupts)
- Delamination of TBC not flaky but "en bloc" near bondcoat
- Delamination occurs on heating ramp unlike usual in TGO derived failure

Summary on Dwell Time and Deposition Rate

Accumulated deposit apparently most important load factor !

High temperature corrosion with CMAS @ 1250°C

* E7 I monouromont

Chemistry but...

Micrographs after 400 burner rig cycles (5min/2min at 1250°C / 1080°C)

High temperature corrosion with CMAS @ 1250°C

Cross-section micrographs of tested samples

System A

100µm

8 mm

ctf ≈ 160 cycles

- re-precipitation of YSZ
- sparse infiltration preferred in large voids

EHT = 10.00 kV Detector = QBSD WD =

K1 2012

System B

ctf ≈ 180 cycles

- re-precipitation of YSZ
- sparse infiltration preferred in large voids

Compare System B vs. D

Different degradation potentially due to different stress levels

- Layer thickness, interface temperature
- Substrate material
- Interface roughness

General comments:

- Major impact of microstructure (porosity, pore size) on performance and damage mode (shallow, spallation or in-depth delamination)
- Mechanism of in-depth degradation still insufficient understood

- Started some work on evolution of CMAS induced degradation by "interrupted" cycling tests
 - same kind of YSZ TBC system
 - > same test conditions
 - > test not driven to failure for all specimen
 - characterization of mechanical degradation by indentation testing
 - > started some modelling to describe

Vorversuche – Last

HEL0001 (TPro; CMAF) – konf.

 höhere Last → größere Eindrücke → größeres Prüfvolumen → besser für Statistik;

aber auch mehr und evtl. ungewollte Defekte im Prüfvolumen (Poren)

 wichtig: höhere Last → niedrigere gemessene Härte (Indentation Size Effect); auch strukturabhängig → Vergleich versch. Lasten/Mikrostrukturen schwierig

17. April 2 Idee: Prüfkraft an Mikrostruktur undergewünschter Defektgröße anpassen 20

Frage: Welche Defekte sind f
ür den Einfluss von CMAS/CMAF zu ber
ücksichtigen?

Serie 1 – Indentation

TBC: Standard YSZ APS BC: Amdry386 VPS Sub: IN738 Force: 250mN →(Indent < Splat)

HEL0028 (as-sprayed) konf. Lasermikroskop

Serie 1 – Failure and Degradation

TBC delaminates near BC

Horizontal cracks in central and upper levels

HEL0023: 69 Zyklen, versagt konf. Lasermikroskop

HEL0024: 46 Zyklen, intakt konf. Lasermikroskop

Serie 1 – Indentation Results

- expected trend of increased hardness in surface near region
- is there hardness
 drecrease near BC
 interface

Serie 1 – Indentation Results

 Similar trend for Young's modulus

Modelling: Geometry and Material Parameter

Material Parameter at Room Temperature:

Modelling: Meshing and Boundary Conditions

Thermal Boundary Conditions	
Case 1	Case 2
Isothermal 1000 °C Cooling to 22 °C	Heating: Convection (h = 2000 W/m ² K, T = 1450 °C) Cooling: Convection (h = 350 W/m ² K, T= 22 °C)
Mechanical Boundary Conditions	
Restriction of displacement at substrate bottom center	

Happy for comments....

Thank you for your attention...

Slide 27 © Forschungszentrum Jülich GmbH

Advanced TBCs for CMAS Mitigation

Assessment: ~80 cycles CMAS @ 0,12mg/min

Deep exfoliation of YSZ reference

Improved resistance for advanced double layer ceramics with mitigation within advanced ceramic surface near layer

