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In-flight Particle Generation, Splat Formation & Goating

Microstructure are Inter-related & Intfluence Durability
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szIncregsed flow rate
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.= morphologies at high flow rates

Thermal cycling @ 1100°C for 40 mins
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‘Well- deflned spherlcal particles at low flow rates increase in
flow rates yields hollow particles and is accompanied greater
presence of unpyrolyzed precursor mass ’

APS YSZ 55ml/min 65ml/min 75ml/min
J Am Ce 0C, J9/7(11), £L YSZ Coatings




SPPS-aftet 980 cycles ™. 4

ARCI 20.0kV 25.0mm x400

20.0kV 7. 8mm x230 SE

» SPPS exhibited better resistance to densification retaining the pores and voids even after long
period of exposure than APS YSZ




Sintering of SPPS TBCs: Role of
microstructural features
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* Fine sized pores, smaller splats, strain tolerant microstructure
enabled longer thermal cyclic life as well as better sintering
' resistance over long period of exposure




Solution precursor hasetd TBCS

Pressurized
precursor tank

& Low deposition rates with
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Simultaneous feeding of
— solution & powder
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N =~ - feedstock to tailor unique
DZ microstructures-- layered,
| S composite and gradient
Powder [, ] €03t structures
Powder »~ Substrate [ -
injector | | @ Flexibility in novel

material combinations

@ Nano-sized features from solution precursor and micron-sized from powder
feedstock yield bimodal features
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W » Protective layer of SPPS YSZ over
ABS E e i Ve | APS YSZ significantly assisted in
| | ' improving the spallation life

20.0kV 11.0mm x200 SE

10% SPPS

20.0kV 9.1mm x170 SE

Thermal cycling @ 1100°C for 40 mins

20.0kV x250 SE

Thermal cycle life

SUVeBSPPS

\(Q'L %??6 9?Q5 9?Q5 QQQ% \{51/
P‘Qs 00]5 60]0 00]0 60{0 QQ(D
» v 9 1 S 20.0kV 8 5mm x300 SE

YSZ Coatings
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100u

m |20.0kV 9.0mm x350 SE

# ¥

" b £ -

ad -
3 :
N
v-'.

)
¥

20.0kV 6.0mm x2.00k SE

T
‘“?F?'#jaé:F

~w-lqiiisz;n»«,¢;&

=,
A
s

|
Fes
- , ; "
[ ¥ ’éf‘\“),‘:‘ :
- e
A,
»

L

<

[ JThermal cycling
Erosion performance

SNERIARNNNNN

e
%
¢

.
’
7
7
7
7
7
7
7
7
7
5
/

D 9



New TBC material possihilities using =

aPPS

U Apart from the standard YSZ, few candidate
coatings like Gd,Zr,0-, Y,Zr,O- are of
Interest to CMAS resistance , high
temperature stability and low thermal
conductivity

U SPPS can potentially deposit various
combination of RE zirconates with or
without additional dopants

4 Ln,Zr,0, ceramics (Ln= La, Nd, Sm, Gd)
with pyrochlore structure or perovskites

U Various coating configurations in terms of
composite or layered architecture

ARCI 15.8mm x1.00k SE



Composite YSZ + Gd,Zr,0,

U 8YSZ powder co-
deposited with
Gd,Zr,0, forming

solution
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Challenges with SPPS depositi
on alumina substrates

Most of the coatings were done on super alloy substrates and while using
Alumina, it posed numerous challenges!

APPROACHES ATTEMPTED

sLow-intensity grit blasting (low pressure, low grit feed)

*Emery roughening

eLaser texturing ... appears most promising

PROBLEMS SPECIFIC TO SPPS

*Low spray distance

*High plasma power

Low deposition rate, high number of passes to develop desired thickness
WHAT ELSE CAN WE TRY?

*Modified fixturing to facilitate heat extraction

*Auxiliary cooling




N,
Quenching studies at Cambridge™

« YSZ coatings were generated on few alumina
specimens at ARCI

* Quenching tests at 1440°C (hold time: 1 hour) for
APS, SPPS and APS+SPPS hybrid coatings Is in
progress

« YSZ coatings with and without 6% Laki ash being
compared under identical conditions

« So far, APS, SPPS and APS+SPPS hybrid YSZ
coatings have undergone 148 cycles and are yet to fall




CONCLUSIONS — based on - 

« SPPS provides a convenient pathway to deposit various
candidate TBC systems of interest to this project

« For a given coating chemistry, SPPS found to outperform APS
In thermal cycling conditions

* Improved understanding of the SPPS process enables control
over coating microstructure and can further enhance life

« Hybrid APS+SPPS can help to overcome low throughput
limitation of SPPS and enable novel TBC architectures

« Certain hybrid architectures particularly good under erosion+TC
environments

* Depositing SPPS coatings on alumina substrates has
presented a significant hurdle




Looking ahead

Further deposition trials on alumina substrates
Duplex APS+SPPS coatings on alumina
Trials with volcanic ash at ARCI

SPPS deposition of coatings with other promising
chemistries (yttrium zirconate, gadolinium
zirconate, lanthanum gadolinate)







YSZ COATING CHARACTERISTICS-
MICROSTRUCTURE
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o Increase in flow rate yield vertical cracks, but beyond certain level, it introduces excessive defects




anipulating Goating Microstructure Through Process Control

@55 mi/min ‘ @65 mI/mln' . @5mimin
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20.0kY 11.4mm x120 SE 400um 20.0kY 10.7mm x120 SE 20.0kY 13.0mm x120 SE

20.0kV 9.6mm x270 SE

N
-

200KV 9.7mm x2.50k SE 306 20 okv 0.0mm K300k SE S 0.0um [l o0 oky 9.6mm x3.00k SE . ST noum
» Significant influence of precursor flow rate on vertical cracks, porosity
» [EXcessive porosity but no vertical cracks at very high flow rates




Understanding Origin of Vertical Cracks

Precursor droplet

UM- Unpyrolyzed

Stage a: In situ formation of

mass HP, SP with remnant UM 1
HP — Hollow | ¢ Incorporation of unpyrolyzed
particles UMlParticle heat-up & acceleration

SP-Solid particles s precursor along with splats

SS - Spherlcal MS (= - \ 4 \ Stage b: Deposition of first layer

particles from oo~ 25 ¢ Higher deposition temperature

secondary
hS-~Holow through
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Repeated plasma torch
scans

Short spray distance

Fine-pored, vertically cracked,
phase pure 8YSZ deposits

At low precursor flow rate At high precursor flow rate

J. Am. Ceram. Soc., 97, 3396 (2014)




COMBINED PERFORMANCE

IMPROVEMENTS OF COMPOSITE YSZ
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YSZ Coatings APS YSZ P67 P75 P80 SPPS YSZ
YSZ coatings

* Layering of SPPS YSZ over APS YSZ improves the thermal cycle life almost close to that
SPPS YSZ; Reasonable improvement in thermal cycling performance of composite YSZ
observed — (Role of densification resistant SPPS YSZ)

* SPPS YSZ exhibited poor erosion resistance

* |mproved resistance for composite YSZ through the addition of sub-micron/nano-sized

features
JTST, 2014, In Press



TYPES OF COATINGS DEVELOPED AT ARCI

Zr0,-Y,0, TBC applications

Phase pure a-Al,O, Dielectric coating

ZnO, ZnFe,0,, TiO,, Fe,0s, Photocatalysis

SrFeNbO.

TiO,, SnO, DSSC applications
LaSrMnO,, FSZ Cell components of SOFC

LIMnO,, LiIFePO,, LINICOMNQ,, |Li-lon battery electrodes
CuO, Fe,0,, SnO,

La,0;/ CeO,+Y,0,/ SrO doped | REO doped TBCs

ZrO,

CaO.6Al,05 with & without High temp solid lubricant, layered
NIiCrAlY matrix ceramics

Dy,0; Magnets

Metal(s) doped ZnO Varistors

Al,O,-TiO,,Ag-ZnO Solar absorption

ZnO-CuO-Al,O4 Reformer catalyst







