Improvements in Gas Turbine Performance via Novel Plasma **Spray Coatings offering Protection against Ingested Species**

Work Plan

	Year 1										Year 2										Year 3												
Cambridge	1	2	3	4	5 6	6 7	8	9	10	11	12	13	14	15	16 1	17	18 19	20	21	22	23	24	25	26	27	28	29	30	31	32 3	3 34	35	36
2.1 Materials & Specimen Production			Α			Ī	E									T	L												T	T	T	1	П
2.2 Assessment of Deposition Efficiency			В				T		I						J	Ī		T	T			R						٧	T				
2.4. Effect of CMAS on Sintering & Spallation							T		F	1						T	М	T	Т	Г		Г		S									
2.5 Development of CMAS-resistant Formulations																					Q							W			Υ		
	RA (M Shinozaki, 100%)															\Box																	
Cranfield	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35														36																		
2.3 Modelling of CMAS adhesion				С					t						к			1							Т				T	Х	Z	1	П
2.6 Modelling of SPPS Process	Г	Г	П		T	D	T		Т		Н	Г				T	1	T	P	T	Т		Г		Ē	ī	U		╗	Т		T	П
	RA (unknown, 100%)																																
	PhD student (unknown, 100%)															\Box																	
ARCI	1	2	3	4	5	6	7	8 9	1	0 11	12	13	14	15	16	17	18 1	9 2	2	22	2 23	24	25	26	27	28	29	30	31	32	33 34	4 35	36
2.1 Materials & Specimen Production	Г		Α			T	E		T							T	L	T	P										T				
2.4. Effect of CMAS on Sintering & Spallation	Г						Т		Т	G	Г							T	Т	Т				S									
2.5 Development of CMAS-resistant Formulations											Ī							1			Q							W			Υ		
		RA (G Sivakumar , 70%)																															
														R	A (u	ınk	now	n,	100	%)									_				
Deliverables											1											2			3			Ī	4				5
Quarterly meetings	1	1		2		T	3		4			5			6		T	7		8	Т		9	Г		10		Т	11		12	2	\exists
Annual reports											1											2							_				3

- Specimen Production and Exchange Procedures Established at Cambridge and ARCI
- B Commissioning of Turbojet Facility for Measurement of Deposition Efficiency completed
- CRA familiar with existing software at Cranfield relating to Particle Impact and Spreading
- Preliminary Model completed for Liquid Precursor and Particle In-flight Dynamics under SPPS conditions
- E Examples of all types of Specimen exchanged between Cambridge & ARCI, and Quality Control establish
- F Microstructural (CMAS Penetration) Characterisation complete
- G Initial trials completed on effect of SPPS Coating Structures on CMAS penetration
- H Nanostructured Coating Formation Simulated via Multi-particle Model
- I Identification of Promising SPPS Precursors for CMAS Resistance
- J Systematic Deposition Efficiency results from Engine Trials conveyed to Cranfield
- K Model for Impingement of Solid CMAS Particles Functional
- L SPPS Coatings on Alumina substrates sent from ARCI to Cambridge, after Exchange Visits
- M Mechanisms established for CMAS Penetration and Sintering Enhancement
- N Study of Effect of CMAS on Erosion Resistance completed
- Model for Semi-solid & Liquid Particle Impact functional and Comparions made with Cambridge results
- P Specimens sent from ARCI to Cranfield for Validation of SPPS Process Simulation
- Preliminary conclusions about "Scavenging" layers, SPPS Structures & Laser Treatments
- R Conclusions reached about Effects of Engine Conditions & Particulate Characteristics on Deposition Effic
- S Final validation of Fracture Mechanics-based Spallation Criterion, as applied to CMAS-enhanced Sinterin
- Incorporation of Effects of Substrate Roughness and Presence of Coating on Adhesion Modelling
- U Final validation of SPPS Model
- V Completed set of experimental results on Particle Adhesion Characteristics sent to Cranfield
- Recommendations finalised for Optimal Counter-measures against CMAS-based Degradation
- X Incorporation of Effect of Substrate Lateral Motion, using discrete phase Lagrangian method
- Industrial Trials completed for Knowledge & Technology Transfer
- **Z** Final conclusions about Measures designed to Inhibit Adhesion of Ingested CMAS

Deliverables:

- 2 Workshop in Cambridge, in collaboration with UK TBC Network
- Report concerning Viability of SPPS for Obtaining Improved Resistance to CMAS-induced Degradation
 Report concerning Viability of "Scavenging" Sprayed Layers, with or without Laser Treatment