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Introduction  

The finite element method (FEM) is a numerical technique for solving a wide range of 
complex physical phenomena, particularly those exhibiting geometrical and material non-
linearities (such as those that are often encountered in the physical and engineering 
sciences). These problems can be structural in nature, thermal (or thermo-mechanical), 
electrical, magnetic, acoustic etc. plus any combination of. It is used most frequently to 
tackle problems that aren’t readily amenable to analytical treatments. 

 

Figure 1: Governing equations for various physical phenomena 

The premise is very simple; continuous domains (geometries) are decomposed into discrete, 
connected regions (or finite elements). An assembly of element-level equations is 
subsequently solved, in order to establish the response of the complete domain to a 
particular set of boundary conditions.  

The Direct Stiffness Method and the Stiffness Matrix 

There are several finite element methods. These are the Direct Approach, which is the 
simplest method for solving discrete problems in 1 and 2 dimensions; the Weighted 
Residuals method which uses the governing differential equations directly (e.g. the Galerkin 
method), and the Variational Approach, which uses the calculus of variation and the 
minimisation of potential energy (e.g. the Rayleigh-Ritz method). 
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We analyse the Direct Stiffness Method here, since it is a good starting point for 
understanding the finite element formulation. We consider first the simplest possible 
element – a 1-dimensional elastic spring which can accommodate only tensile and 
compressive forces. For the spring system shown in Fig.2, we accept the following 
conditions: 

⋅ Condition of Compatibility – connected ends (nodes) of adjacent springs have the 
same displacements 

⋅ Condition of Static Equilibrium – the resultant force at each node is zero 
⋅ Constitutive Relation – that describes how the material (spring) responds to the 

applied loads 

 

Figure 6: Model spring system 

The constitutive relation can be obtained from the governing equation for an elastic bar 
loaded axially along its length: 

𝑑
𝑑𝑢
�𝐴𝐸 ∆𝑙

𝑙0
�+ 𝑘 = 0             (1) 

∆𝑙
𝑙0

= 𝜀               (2) 

𝑑
𝑑𝑢

(𝐴𝐸𝜀) + 𝑘 = 0               (3) 

𝑑
𝑑𝑢

(𝐴𝜎) + 𝑘 = 0                (4) 

𝑑𝐹
𝑑𝑢

+ 𝑘 = 0                (5) 

𝑑𝐹
𝑑𝑢

= −𝑘                 (6) 

𝑑𝐹 = −𝑘𝑑𝑢                 (7) 

The spring stiffness equation relates the nodal displacements to the applied forces via the 
spring (element) stiffness. From here on in we use the scalar version of Eqn.7. 
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Derivation of the Stiffness Matrix for a Single Spring (Element 

 

From inspection, we can see that there are two degrees of freedom in this model, 𝑢𝑖  and 𝑢𝑗 .  
We can write the force equilibrium equations: 

𝑘(𝑒)𝑢𝑖 − 𝑘(𝑒)𝑢𝑗 = 𝐹𝑖
(𝑒)             (8) 

−𝑘(𝑒)𝑢𝑖 + 𝑘(𝑒)𝑢𝑗 = 𝐹𝑗
(𝑒)            (9) 

In matrix form 

� 𝑘
𝑒 −𝑘𝑒

−𝑘𝑒 𝑘𝑒 � �
𝑢𝑖
𝑢𝑗� =  �

𝐹𝑖
(𝑒)

𝐹𝑗
(𝑒)�                        (10) 

The order of the matrix is [2×2] because there are 2 degrees of freedom. Note also that the 
matrix is symmetrical. The ‘element’ stiffness relation is: 

�𝐾(𝑒)��𝑢(𝑒)� =  �𝐹(𝑒)�                        (11) 

Where 𝐾(𝑒) is the element stiffness matrix, 𝑢(𝑒) the nodal displacement vector and 𝐹(𝑒) the 
nodal force vector. (The element stiffness relation is important because it can be used as a 
building block for more complex systems. An example of this is provided later.) 

Derivation of a Global Stiffness Matrix 

For a more complex spring system, a ‘global’ stiffness matrix is required – i.e. one that 
describes the behaviour of the complete system, and not just the individual springs. 

 

From inspection, we can see that there are two springs (elements) and three degrees of 
freedom in this model, 𝑢1, 𝑢2 and 𝑢3.  As with the single spring model above, we can write 
the force equilibrium equations: 
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𝑘1𝑢1 − 𝑘1𝑢2 = 𝐹1                            (12) 

−𝑘1𝑢1 + (𝑘1 + 𝑘2)𝑢2 − 𝑘2𝑢3 = 𝐹2                          (13) 

𝑘2𝑢3 − 𝑘2𝑢2 = 𝐹3                                        (14) 

In matrix form 

�
𝑘1 −𝑘1 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2

0 −𝑘2 𝑘2
� �
𝑢1
𝑢2
𝑢3
� =  �

𝐹1
𝐹2
𝐹3
�                      (15) 

The ‘global’ stiffness relation is written in Eqn.16, which we distinguish from the ‘element’ 
stiffness relation in Eqn.11. 

[𝐾]{𝑢} =  {𝐹}                                     (16) 

Note the shared 𝑘1 and 𝑘2 at 𝑘22 because of the compatibility condition at 𝑢2. We return 
to this important feature later on. 

Assembling the Global Stiffness Matrix from the Element Stiffness Matrices 

Although it isn’t apparent for the simple two-spring model above, generating the global 
stiffness matrix (directly) for a complex system of springs is impractical. A more efficient 
method involves the assembly of the individual element stiffness matrices. For instance, if 
you take the 2-element spring system shown, 

 

split it into its component parts in the following way 

                               

and derive the force equilibrium equations 

𝑘1𝑢1 − 𝑘1𝑢2 = 𝐹1                            (17) 

𝑘1𝑢2 − 𝑘1𝑢1 = 𝑘2𝑢2 − 𝑘2𝑢3 = 𝐹2                          (18) 
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𝑘2𝑢3 − 𝑘2𝑢2 = 𝐹3                                        (19) 

then the individual element stiffness matrices are: 

� 𝑘
1 −𝑘1

−𝑘1 𝑘1
� �
𝑢1
𝑢2� =  �𝐹1𝐹2

� and � 𝑘
2 −𝑘2

−𝑘2 𝑘2
� �
𝑢2
𝑢3� =  �𝐹2𝐹3

�                    (20) 

such that the global stiffness matrix is the same as that derived directly in Eqn.15: 

�
𝑘1 −𝑘1 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2

0 −𝑘2 𝑘2
� �
𝑢1
𝑢2
𝑢3
� =  �

𝐹1
𝐹2
𝐹3
�                      (21) 

(Note that, to create the global stiffness matrix by assembling the element stiffness 
matrices, 𝑘22 is given by the sum of the direct stiffnesses acting on node 2 – which is the 
compatibility criterion. Note also that the indirect cells �𝑘𝑖𝑗� are either zero (no load transfer 
between nodes i and j), or negative to indicate a reaction force.) 

For this simple case the benefits of assembling the element stiffness matrices (as opposed 
to deriving the global stiffness matrix directly) aren’t immediately obvious. We consider 
therefore the following (complex) system which contains 5 springs (elements) and 5 degrees 
of freedom (problems of practical interest can have tens or hundreds of thousands of 
degrees of freedom (and more!)). Since there are 5 degrees of freedom we know the matrix 
order is 5×5. We also know that it’s symmetrical, so it takes the form shown below: 
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We want to populate the cells to generate the global stiffness matrix. From our observation 
of simpler systems, e.g. the two spring system above, the following rules emerge: 

⋅ The term in location ii consists of the sum of the direct stiffnesses of all the elements 
meeting at node i 

⋅ The term in location ij consists of the sum of the indirect stiffnesses relating to nodes 
i and j of all the elements joining node i to j 

⋅ Add a negative for reaction terms (−𝑘𝑖𝑗) 
⋅ Add a zero for node combinations that don’t interact 

By following these rules, we can generate the global stiffness matrix: 

 

This type of assembly process is handled automatically by commercial FEM codes 

Solving for (𝑢) 

The unknowns (degrees of freedom) in the spring systems presented are the displacements 
𝑢𝑖𝑗. Our global system of equations takes the following form: 

 

To find {𝑢} solve 

 {𝑢} = {𝐹}[𝐾]−1                         (22) 

Recall that [𝑘][𝑘]−1 = I = Identitiy Matrix =  �1 0
0 1� .  
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Recall also that, in order for a matrix to have an inverse, its determinant must be non-zero. 
If the determinant is zero, the matrix is said to be singular and no unique solution for Eqn.22 
exists. For instance, consider once more the following spring system: 

 

We know that the global stiffness matrix takes the following form 

�
𝑘1 −𝑘1 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2

0 −𝑘2 𝑘2
� �
𝑢1
𝑢2
𝑢3
� =  �

𝐹1
𝐹2
𝐹3
�                     (23) 

The determinant of [𝐾] can be found from: 

det �
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

� = (𝑎𝑒𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ) − (𝑐𝑒𝑔 + 𝑏𝑑𝑖 + 𝑎𝑓ℎ)                         (24) 

Such that: 

(𝑘1(𝑘1 + 𝑘2)𝑘2 + 0 + 0) − �0 + (−𝑘1−𝑘1𝑘2) + (𝑘1−𝑘2 − 𝑘2)�      (25) 

det[𝐾] = �𝑘12𝑘2 + 𝑘1𝑘22� − �𝑘12𝑘2 + 𝑘1𝑘22� = 0                    (26) 

Since the determinant of [𝐾] is zero it is not invertible, but singular. There are no unique 
solutions and {𝑢} cannot be found. 
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Enforcing Boundary Conditions 

By enforcing boundary conditions, such as those depicted in the system below, [𝐾] becomes 
invertible (non-singular) and we can solve for the reaction force 𝐹1 and the unknown 
displacements {𝑢2} and {𝑢3}, for known (applied) 𝐹2 and 𝐹3. 

 

[𝐾] = �𝑘
1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

� = �𝑎 𝑏
𝑐 𝑑�                        (27) 

𝑑𝑒𝑡[𝐾] = 𝑎𝑏 − 𝑐𝑑                         (28) 

𝑑𝑒𝑡[𝐾] =  (𝑘1 + 𝑘2)𝑘2 − 𝑘22 = 𝑘1𝑘2 ≠ 0                       (29) 

Unique solutions for 𝐹1, {𝑢2} and {𝑢3} can now be found 

−𝑘1𝑢2 = 𝐹1 

(𝑘1 + 𝑘2)𝑢2 − 𝑘2𝑢3 = 𝐹2 = 𝑘1𝑢2 + 𝑘2𝑢2 − 𝑘2𝑢3 

−𝑘2𝑢2 + 𝑘2𝑢3 = 𝐹3 

 

 

 

In this instance we solved three equations for three unknowns. In problems of practical 
interest the order of [𝐾] is often very large and we can have thousands of unknowns. It then 
becomes impractical to solve for {𝑢} by inverting the global stiffness matrix. We can instead 
use Gauss elimination which is more suitable for solving systems of linear equations with 
thousands of unknowns. 
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Gauss Elimination 

We have a system of equations 

𝑥 − 3𝑦 + 𝑧 = 4                         (30) 

2𝑥 − 8𝑦 + 8𝑧 = −2                         (31) 

−6𝑥 + 3𝑦 − 15𝑧 = 9                        (32) 

when expressed in augmented matrix form  

�
1 −3 1
2 −8 8
−6 3 −15

�
4
−2
9
�                                    (33) 

We wish to create a matrix of the following form 

�
11 12 13
0 22 23
0 0 33

�
1
2
3
�                        (34) 

Where the terms below the direct terms are zero 

We need to eliminate some of the unknowns by solving the system of simultaneous 
equations 

To eliminate x from row 2 (where R denotes the row) 

-2(R1) + R2                          (35) 

−2(𝑥 − 3𝑦 + 𝑧) + (2𝑥 − 8𝑦 + 8𝑧) = −10                     (36) 

−2𝑦 + 6𝑧 = −10                         (37) 

So that 

�
1 −3 1
0 −2 6
−6 3 −15

�
4

−10
9
�                       (38) 

To eliminate x from row 3 

6(R1) + R3                          (39) 

6(𝑥 − 3𝑦 + 𝑧) + (−6𝑥 + 3𝑦 − 15𝑧) = 33                                                                      (40) 

−15𝑦 − 9𝑧 = 33                                    (41) 

�
1 −3 1
0 −2 6
0 −15 −9

�
4

−10
33

�                        (42) 
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To eliminate y from row 2 

R2/2 

−𝑦 + 3𝑧 = −5                        (43) 

�
1 −3 1
0 −1 3
0 −15 −9

�
4
−5
33
�                        (44) 

To eliminate y from row 3 

R3/3 

−5𝑦 − 3𝑧 = −11                                    (45) 

�
1 −3 1
0 −1 3
0 −5 −3

�
4
−5
11
�                         (46) 

And then 

-5(R2) + R3                          (47) 

−5(−𝑦 + 3𝑧) + (−5𝑦 − 3𝑧) = 36                       (48) 

−18𝑧 = 36                        (49) 

�
1 −3 1
0 −1 3
0 0 −18

�
4
−5
36
�                         (50) 

−2 = 𝑧                                      (51) 

Substituting z = -2 back in to R2 gives y = -1 

Substituting y = -1 and z = -2 back in to R1 gives x = 3 

This process of progressively solving for the unknowns is called back substitution. 
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Basic Steps in FEM Modelling 

Consider a wall mounted bracket loaded uniformly along its length as in Fig.2 

 

Figure 2: Wall mounted bracket 

The geometry is defined for us and is (relatively) complex. The boundary conditions are also 
defined and are: 

⋅ A uniform force per unit length along the upper edge 
⋅ Fixed x and y displacements along the clamped edge 

It is apparent that the bracket will respond mechanically under the action of the applied 
load and a system of internal stresses will develop (to balance the applied load). To calculate 
the stresses that develop we must first discretise the domain, assemble the global stiffness 
matrix [𝐾], and then determine the nodal displacements {𝑢} and resultant forces {𝐹} using 
some iterative numerical technique (Gauss elimination, for instance). It is then a relatively 
trivial exercise to compute the stresses from the displacements (particularly for systems 
that remain elastic). 
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