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ABSTRACT

A methodology is presented for obtaining plasticity characteristics of bulk metallic materials from single
run indentation data. It involves repeated FEM modelling, with the predicted outcome (load-displacement
plot) being systematically compared with experiment. The “correct” property values are found by search-
ing for the combination giving the maximum value for a “goodness of fit” parameter (g) measuring the
agreement between experimental and predicted outcomes (ranging from O for no agreement to 1 for
perfect agreement). A matrix of property values are used as input data for the FEM model. The key issue
is that of promoting convergence on the “correct” parameter combination. It is becoming accepted that
use of more than one indenter shape will assist in this operation and the paper includes an exploration
of this issue. It is emphasized that the strain field beneath an indenter affects the relationship between
stress-strain curve and load-displacement plot, so use of shapes that create different strain fields adds ex-
tra degrees of freedom that facilitate convergence. However, there are various problems associated with
use of indenters having “sharp” points or edges, and a spherical shape is much preferred. It is highlighted
here that, provided the indenter shape is not self-similar (so that the nature of the strain field changes
with increasing penetration depth), analogous benefits to those arising from multiple shapes can be ob-
tained by carrying out “g-screening” operations on multiple sections of a single load-displacement plot.
This is an entirely novel approach that offers considerable promise for the tractable characterization of
plasticity via a single indentation run with a spherical indenter. It has been employed in the present
work to obtain values of three plasticity parameters from such a run for an extruded copper sample. In
fact, the stress-strain curve for this material is not one that conforms closely to a simple analytical for-
mulation, imposing a limit on the fidelity of the inferred stress-strain curve, but it is nevertheless shown
that the proposed procedure is viable and potentially very accurate.
© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

fortunately, the stress and strain fields beneath an indenter, even
one with a simple shape such as a sphere, are complex and change

There has been increasing focus over the past decade or two on
the important objective of obtaining (engineering or true) stress-
strain curves (beyond the elastic limit) from instrumented inden-
tation data (mainly load-displacement plots). Since these stress-
strain curves are regarded as prime indicators of the plasticity
characteristics of a material, and indentation is a much more ver-
satile and convenient procedure than conventional uniaxial testing,
this quest has a strong motivation. The approaches used fall into
two main categories. Most studies have sought to identify analyti-
cal formulations that can be applied to the experimental data. This
has obvious attractions, since such a formulation, even if involving
relatively complex expressions and algorithms, would allow rapid
extraction of the stress-strain curves via a well-defined path. Un-
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with penetration depth, making it difficult to identify realistic an-
alytical relationships.

Of course, for a material with a given (uniaxial) stress-strain
curve, assumed to be applicable to deviatoric (von Mises) com-
ponents of stress and strain for multi-axial situations, the load-
displacement plot during indentation can be predicted (using
FEM), for any given indenter shape. However, the inverse prob-
lem of inferring the stress-strain relationship from such a load-
displacement plot is much more challenging, with considerable
scope for ambiguity (different stress-strain relationships giving ef-
fectively the same load-displacement plot). In fact, this problem is
the main obstacle for the second category of approach (Dao et al.,
2001; Bolzon et al., 2004; Bouzakis and Michailidis, 2004; Bouzakis
and Michailidis, 2006; Pelletier, 2006; Guelorget et al., 2007; Hein-
rich et al.,, 2009; Dean et al., 2010; Bobzin et al., 2013; Patel and
Kalidindi, 2016), which is simply to carry out iterative FEM mod-
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eling of the indentation process using various trial stress-strain
curves (characterized via a set of parameter values) and converge
on the set giving optimum agreement with the experimental load-
displacement plot. This is at least a transparent and rigorous pro-
cedure, although its wide implementation is inhibited by the need
to carry out FEM modeling runs that are specific to each individual
case, as well as by the “uniqueness” problem.

For both types of approach, it has been recognized (Futakawa
et al., 2001; Bucaille et al., 2003; Capehart and Cheng, 2003; Chol-
lacoop et al., 2003; Cheng and Cheng, 2004; Ma et al., 2012) that
there may be advantages in obtaining more comprehensive sets of
experimental data. It is well understood that the stress and strain
fields beneath an indenter are scale-independent. For example, the
fields created by penetration of a sphere to a depth correspond-
ing to, say, 10% of its radius are identical for radii of, say, 10 pm
and 10 mm. (The absolute value of the load at this point will be
108 greater for the latter case, while the penetration will be 103
greater, but the information being provided about the stress-strain
response of the material is the same, provided the volume being
interrogated is in both cases large enough to be representative of
the bulk response.)

However, if further (different) shapes are used, for example by
testing with a cone, in addition to a sphere, then the different rela-
tionship between the stress and strain fields in the sample and the
measured load-penetration plot introduces extra degrees of free-
dom and reduces the likelihood of ambiguity, facilitating conver-
gence on the correct set of plasticity parameters and raising the
level of confidence in their reliability. In fact, a similar type of im-
provement can also be obtained by expanding the range of exper-
imental outcomes being considered - for example, encompassing
the residual indent shape, as well as the load-displacement plot -
although this is likely to make the whole process more cumber-
some, both experimentally and in terms of the convergence algo-
rithm.

For any approach involving realistic representation of the stress
and strain fields, the relationship between them - ie the material
plasticity response - must be characterized via a set of parameter
values: in fact, several formulations are in use, but the following
expression is most commonly employed

where ¢ is the (von Mises) applied stress, oy is its value at yield,
¢p is the plastic (von Mises) strain, K is the work hardening co-
efficient and n is the work hardening exponent, so that there are
3 parameter values in the general case. If K=0, then there is no
work hardening (“perfectly plastic”) and the behaviour is charac-
terised by a single parameter value (ov). If K is non-zero and n
has a value of 1, then linear work hardening is exhibited and the
behaviour is characterised by two parameter values.

A large number of schemes have been proposed (Cheng and
Cheng, 1999; Giannakopoulos and Suresh, 1999; Dao et al., 2001;
Herbert et al., 2001; Cheng and Cheng, 2004; Alkorta et al., 2005;
Herbert et al., 2006; Xu and Chen, 2010; Hausild et al., 2012;
Fu et al, 2015) for inferring such plasticity parameters from in-
dentation data, many based on some sort of minimization of the
discrepancy between the values of dimensionless parameters, so
as to obtain analytical functions that relate indentation data to
elasto-plastic properties. These dimensionless parameters are usu-
ally functions of E, oy, K and n, although in some cases they in-
clude parameters such as the curvature of the load-displacement
plot, the contact stiffness, the ratio between residual penetration
and maximum indentation depths and the ratio of plastic work
to total work. There are also schemes for converting experimen-
tal load-displacement plots to stress-strain curves by identifying
“effective” values of both stress and strain at a given penetration

depth. Such formulations often include various kinds of “correc-
tion” or “calibration” factors for specific classes of alloy and in gen-
eral it's clear that they are far from being universally applicable
or reliable. Furthermore, the lack of rigour and transparency about
the underlying assumptions means that, even if values can be ob-
tained, there are no real grounds for assessing their accuracy or
reliability.

The alternative approach of simply carrying out FEM mod-
elling of the actual indentation process(es) concerned, using trial
material properties, and then to iteratively alter these properties
until optimal agreement is obtained between predicted and ob-
served experimental outcomes, is now being explored more sys-
tematically. Dean et al. (2010) estimated that, typically, the yield
stress, oy, could be determined to a precision of about + 10%, and
the linear work-hardening rate, K, to about + 25%. Their method
involved iterative variations in the parameter values in a linear
work-hardening relationship (ie n=1 in Eq. (1)) until optimum
agreement was obtained between predicted and measured load-
displacement data (in a testing regime in which creep effects could
be neglected). The iteration was carried out “manually” and there
was no systematic assessment of expected error levels (apart from
comparing inferred values with those obtained by conventional
testing) or of the uniqueness of solutions. Nevertheless, the results
do provide some confirmation that the methodology is basically
sound. It’s unsurprising that the precision was lower for K, com-
pared with oy, although this is expected to depend on the plastic
strain levels induced during the test.

A potentially useful (dimensionless) parameter in this context
is W, defined as the work hardening contribution to the stress, at
a given level of plastic strain, relative to the yield stress.

_Keg
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w (2)

For uniaxial loading up to a certain strain level, this would be
simple to evaluate. With an inhomogeneous strain field, such as
that during indentation, it would be possible to use the maximum
level of strain in Eq. (2), although a more logical approach in as-
sessing the influence of work hardening on the outcome would
be to use a strain level representing some sort of volume-average,
weighted by the proportion of the total amount of plastic work
that had been done in the volume elements concerned as indenta-
tion proceeds up to a given displacement.

Of course, the main drawback of this “simple” inverse iterative
FEM procedure is that it requires the user to carry out dedicated
FE modelling for a large number of combinations of the parameter
values. This is in practice a major obstacle to widespread use, par-
ticularly if the iteration process is poorly-defined. However, if the
key features of such iteration procedures can be fully understood,
then there will clearly be scope for automation of the convergence
process, perhaps to such an extent that the user need not become
involved at all with actual FE modelling. Such an automated proce-
dure will clearly need to involve evaluation of a suitable “goodness
of fit” parameter, characterizing the level of agreement between
experimental and predicted outcomes (such as load-displacement
plots). One definition was suggested by Bolzon et al. (2004), who
noted that the accuracy of inferred values could be improved if
residual indent shapes were taken into account, as well as load-
displacement data.

The main requirement now, in order for procedures (and ded-
icated software packages) to become widely accepted and em-
ployed, is clear identification of the factors that affect sensitivities
and efficient convergence on “correct” solutions for inferred prop-
erties, and selection/testing of an optimized algorithm. This is the
focus of the present paper.
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Fig. 1. Optical micrographs of extruded copper (a) as-polished/etched and (b) after indentation with a sphere of diameter 3 mm, to a depth of about 100 pm.

2. Experimental procedures
2.1. Materials and microstructures

An extruded (25 mm diameter) copper bar, in the as-received
state, was used in this study. Both conventional compression test-
ing and instrumented indentation were carried out along the ex-
trusion axis. It can be seen in Fig. 1(a) that the grain size (in trans-
verse section) was of the order of 100 um. Such (relatively coarse)
grain structures, which are far from uncommon, do present chal-
lenges in terms of using indentation to obtain (bulk) properties,
since it’s clear that these can only be obtained by mechanically
interrogating a representative (multi-grain) volume. The indent in
Fig. 1(b), which was created using a large diameter (3 mm) sphere,
clearly does this. This issue is addressed in Section 3.3.

2.2. Uniaxial compression testing

In order to obtain the “correct” plasticity parameter values for
this material, samples were subjected to uniaxial compression test-
ing between rigid (hardened steel) platens. Cylindrical specimens
(5 mm height, 5 mm diameter) were tested at room temperature
(20 °C+£2 °C), using MoS, lubricant to minimize barrelling. Dis-
placements were measured using a Keyence scanning laser system
(and checked with a Linear Variable Displacement Transducer).
Both of these systems have a resolution of ~1um, and gave very
close agreement. Testing was carried out under displacement con-
trol (at a rate of 25ums—!), using an Instron 5562 screw-driven
testing machine, with a load cell having a capacity of 30 kN.

Tests were carried out up to displacements of about 500 um
(10% plastic strain), so that each test took about 20 s to complete. It
was confirmed that barrelling was negligible over this strain range.
In order to check on the possible significance of creep, the dis-
placement was held at 500 um for a period of 60s. The load drop
over this period was found to be about 50N (ie a fall of < 1%). This
is considered to be negligible in the context of the testing being
undertaken (both compression and indentation).

Several repeat tests were carried out. Both stress and strain lev-
els were converted from nominal to true values, using the standard
expressions:

er=In(1+¢n) (3)

with the strains in this case being negative (compressive), so that
the true stress is lower than the nominal value. The data for a typ-
ical run are shown in Fig. 2, plotted as both nominal and true val-
ues. The variation between tests was in general very small (< 1%).
It can be seen that, as a true stress - true strain relationship,
this material exhibits some work hardening, although it’s relatively
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Fig. 2. A typical stress-strain plot from compression testing of a copper sample,
plotted as both nominal and true values.

weak - the extrusion process probably left a fairly high level of
residual cold work - so that the sensitivity of the indentation re-
sponse to the work hardening is expected to be relatively low. For
example, the value of the ratio W (Eq. (2)) is about 20%, for a plas-
tic strain of 10%. It is also fairly clear from the plot in Fig. 2 that
the stress-strain response cannot be captured to very high accu-
racy by an expression with the form of Eq. (1), since there is a
transition from a relatively low value of n at low strains to a more
linear plot (n close to 1) at higher strains. This material therefore
presents a challenge in terms of accurate evaluation of the work
hardening behaviour.

2.3. Instrumented indentation

The loading and strain measurement set-up described above
was also used for the indentation testing, this time under load con-
trol. A single indenter was used - a sphere of radius 2 mm, made
of hardened steel. The load was taken to about 1kN, corresponding
to a displacement of about 100 pm and an impression diameter of
just over 1200 um - see Fig. 1(b) for a similar case. A representative
load-displacement plot is shown in Fig. 3.

3. Background to algorithm development
3.1. Goodness of fit Parameter, g

Central to this methodology is the definition of a “goodness of
fit” parameter, g, characterizing the level of agreement between
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Fig. 3. A typical load-displacement plot obtained during indentation testing of a
copper sample, using a spherical indenter of diameter 4 mm.
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Fig. 4. Schematic of an experimental load-displacement plot, with a modeled pre-
diction superimposed, and the definition of the goodness-of-fit parameter, g.

predicted and measured outcomes. The definition employed (for
load-displacement plots) in the current work is:

YN, AP?
VIR, (P - Py)?

with the meanings of the parameter values being illustrated in
Fig. 4. Comparisons are made between experimental and predicted
values of load (P) at a set of N values of the displacement, §. This is
done at selected displacement intervals and, in the present work,
the value of N was typically about 100. It is clear from the form
of Eq. (4) that perfect agreement between the two sets of data
(AP; =0 for all i values) gives a value for g of 1, while no agree-
ment (ie predictions random about the average value) leads to a
value of 0.

It should be emphasized that alternative definitions for a
goodness-of-fit parameter can be devised. For example, incremen-
tal scanning could be carried out on the y-axis (P values), in-
stead of, or in addition to, that along the x-axis. Furthermore, def-
initions are possible for which perfect agreement corresponds to
g=0, with the sign of the g value indicating whether, on average,
predicted loads are above or below the reference (experimental)
values. However, the definition used here serves to illustrate the
main features of g-scanning operations.

g=1- (4)

3.2. FEM modelling

Axi-symmetric FEM models were built using COMSOL multi-
physics. Both indenters and samples were modelled as deformable
bodies and meshed with second order quadrilateral and/or trian-
gular elements. While the indenter is expected to remain elastic
throughout, it can be important in high precision work of this na-
ture not to treat it as a rigid body: not only is it possible for its
elastic deformation to make a significant contribution to the over-
all displacement, but its lateral Poisson expansion could affect the
outcome, particularly if attention is being focused on the shape of
the residual impression. Such simulation of the indenter deforma-
tion was particularly important in the present work, based on us-
ing steel indenters (with relatively low stiffness and relatively high
Poisson ratio), but in fact it should be carried out in all cases in
which high precision is required. Of course, such modeling also al-
lows a check to be made on whether there is any danger of the
indenter being plastically deformed.

Meshes were, of course, refined in regions of the sample close
to the indenter. Sensitivity analyses confirmed that the meshes
employed were sufficiently fine to achieve convergence, numerical
stability and mesh-independent results. The situation regarding the
extent of the sample being represented in the simulation should
also be noted. The lateral extent is of little significance, provided
it extends well beyond the region of plastic deformation and pro-
vides representative constraint. In the loading direction, however,
there is the issue of whether the contribution to the measured de-
flection caused by elastic deformation of the sample is being fully
captured. It is conventional to locate the sample on a flat, rigid
surface that remains fixed. The displacement during indentation is
then the change in separation between that level and another flat,
rigid surface, to which the indenter is attached. The thickness of
the sample in the simulation must be sufficient to capture all of
the contribution to the displacement from its elastic deformation
(as well as its plastic deformation). In practice, however, the stress,
and hence the elastic strain, in the sample drop off with distance
from the indenter and, at least in most cases, will become negli-
gible well above the bottom of the sample. In the present work,
the sample thickness in the simulations was at least 5 times the
depth to which plastic deformation extended during the test and
it was confirmed that this was sufficient to ensure that the con-
tribution to the overall displacement from its elastic deformation
was accurately captured.

The simulation runs were carried out under displacement con-
trol, with the output being the predicted load at a series of (~100)
specified displacement values (1 um intervals) over the range con-
cerned. The residual indent shape, and the surrounding fields of
residual stress and plastic strain, were also predicted in each case.
All material properties were assumed to be isotropic. For the il-
lustrative runs (Sections 3.4 and 4), the Young’s moduli of inden-
ter and sample were respectively taken to be 210 GPa (steel) and
120 GPa (copper), while the Poisson ratios were both taken to be
0.3. The same values were used for the comparisons with experi-
mental data obtained using the copper (Section 5).

The meshes employed are shown in Fig. 5, corresponding to the
three indenter shapes used in these simulations (Section 4). Also
shown in the figure are the plastic strain fields for three different
penetrations, for a reference case of oy =300MPa, K= 1000 MPa
and n=1. It's important to appreciate that these strain fields are
independent of scale - see Section 3.3 below. It can be seen in
this figure that the strain fields are substantially different for these
three cases, both in terms of the distribution of the strains and
their magnitudes. These differences in strain distribution are rel-
evant to the algorithm for extraction of the plasticity parameters
- see Section 4. It can also be seen that, for the only self-similar
shape (the cone), the nature of the strain field is independent of
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Fig. 5. FEM meshes used for the sphere, cone and cylindrical punch, with corresponding fields of (von Mises) plastic strain after three different extents of penetration.

penetration! (although the magnitude of the strains does increase
with penetration), whereas for the other two (non-self-similar)
shapes, it is not.

3.3. Scale of indentation

Important benefits arise, when the objective is to extract bulk
properties, from carrying out the testing on a relatively coarse
scale (while retaining the key advantages of being able to test
small, flat samples, to carry out point-to-point mapping of prop-
erties etc). In particular, the volume being interrogated must have
a response that is representative of the bulk. While much recent

1 This is the case when the penetration is much greater than the radius at the tip
of the cone, as for the simulations shown.

indentation research has focused on very fine scales, it is arguably
on this “meso” scale (such that indents are large enough for repre-
sentative material response, but small enough to allow small sam-
ples and mapping) that the main potential for increased industrial
usage of indentation lies. The minimum indent size for represen-
tative response depends on microstructure, but in many cases it
will require deformation of an assembly of grains - perhaps at least
about a dozen and preferably more. A crude rule of thumb might
be that, viewed on the free surface, the indent should straddle at
least “several” grains. Of course, the corresponding minimum in-
dent diameter might range from below 1um to above 1 mm, but
it will certainly be small enough in most cases to offer the attrac-
tions outlined above.

In the current case, the grain size is about 100pum (Fig. 1),
so it was ensured that all indent diameters were at least a few
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hundred microns - see Fig. 1(b) for a typical indent produced
using a sphere. This does require relatively large indenters (~mm
dimensions) and also large loads (~hundreds of N, or even a
few kN), which may be beyond the range of some indentation
systems (but perhaps below the commonly-used ranges of some
conventional mechanical testing systems). However, systems in
this “intermediate” load range are in general easier and cheaper
to construct and use than either of the other two types of system.
Moreover, a relatively coarse scale of indentation minimizes the
problems associated with surface roughness, oxide films, contam-
ination etc. Of course, there may still be advantages in locating
such systems within a vacuum chamber, facilitating testing at high
and low temperatures, and reducing the problems associated with
oxidation of sample or indenter.

3.4. Shape of indenter

Regarding the role of indenter shape, axial symmetry has clear
attractions, particularly when large numbers of FEM modeling
runs will be required. (Of course, the sample may be transversely
anisotropic, which would be apparent from the shape of the in-
dent, although in most cases such anisotropy is small.) This still
leaves, however, considerable potential for creating different types
of strain field, since the shape can vary from a sphere, through var-
ious types of cone, to a cylindrical punch.

For (axi-symmetric) indenter shapes other than a sphere, such
as a cone, there will be more than one shape parameter (eg cone
angle and tip radius), but the same arguments about scale apply.
The differences between the plastic strain fields beneath indenters
with different shapes are important, since they lead to sample re-
sponses that will depend on the plasticity parameters of the ma-
terial in different ways, and hence are providing different informa-
tion about them. Strain fields are shown in Fig. 5 under indenters
with three different shapes, for three different penetrations in each
case. As many workers have highlighted, there are potential advan-
tages in using more than one indenter shape, in terms of conver-
gence on the “correct” set of parameter values, and this is also il-
lustrated below (Section 4).

However, it’s also important to recognize the disadvantages as-
sociated with many (non-spherical) shapes. Most such shapes in-
corporate “sharp” edges or points of some sort. In practice, these
regions must have a finite radius and that value may be difficult
to establish (and prone to change and shape degradation during
service). Furthermore, as can be seen in Fig. 5, the strains in the
sample close to these regions (when a suitable tip or edge ra-
dius is used in the model) are predicted to become large, even
for relatively small penetrations. This makes the load-displacement
response sensitive to very high strain regions of the stress-strain
curve, where it is in fact unlikely to conform to the plot extrapo-
lated from the lower strain regime (and where, in practical terms,
there is probably little interest in the behavior). There is in general
no doubt that a sphere is by far the most convenient and theoret-
ically attractive shape to use.

The relationship between the uniaxial stress-strain curve and
the indentation load-displacement plot, for a given indenter shape
and penetration depth, is clearly of importance. As was mentioned
in Section 1 (Eq. (2)), the sensitivity of the indentation outcome to
the work hardening characteristics will depend on the value of the
parameter W, but there is potential uncertainty about the value
of the plastic strain to use in this equation (since the maximum
value will in most cases be generated only in a small volume and
the behavior in that regime of strain will have little influence on
the overall outcome). The plot in Fig. 6 is relevant to this issue. It
shows, for a spherical indenter, how the peak strain in the sample
increases as the penetration is raised (up to /R =5%, which is one
of the cases shown in Fig. 5). Also shown is the weighted aver-
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Fig. 6. Predicted value of the peak strain within a sample, as a function of the pen-
etration depth of a spherical indenter of radius 2 mm (up to a value corresponding
to §/R=5%). Also shown is the corresponding weighted average plastic strain within
the sample.

age strain. The averaging procedure, over all volume elements ex-
periencing plastic strain (up to the penetration depth concerned),
involved weighting by the plastic work done at each strain level.
It can be taken as some sort of effective strain level to which the
response up to the penetration concerned is sensitive. (This plot
was produced using oy =300 MPa, K=1000MPa and n=1, but it
can be taken as broadly illustrative.) It can be seen that, for ex-
ample, while penetration to a depth of 100 pum creates some large
strains (~30%), these are in a small volume (and are only created
towards the end of the run), and the overall outcome of such a
test is mainly sensitive to the nature of the stress-strain curve in a
regime with an average value around 8%.

Finally, the issue of the smoothness of the surfaces of both the
indenter and the sample is worthy of attention. Analysis is cer-
tainly simplified if frictional effects can be neglected. Most stud-
ies of this issue have concluded that the coefficient of friction is
usually low during indentation and, even if it's not, the resultant
changes in behavior are relatively small. Nevertheless, there are
clear advantages in the surfaces being smooth on the scale of in-
terest. This is often the case, although the problems naturally get
worse as the indenter size is reduced. It is in any event worth not-
ing that the early part of a load-displacement plot, where the pen-
etration depth is similar in magnitude to the surface roughness, is
unlikely to yield highly accurate or reliable data.

4. Algorithm for extraction of plasticity parameter values
4.1. Perfectly plastic material (no work hardening)

This is, of course, the simplest case, with just one parame-
ter (oy) to evaluate, and hence the treatment is easy to follow.
Taking the (“correct”) value to be 300 MPa, and running the FEM
model for a sphere, leads to the load-displacement plot shown in
Fig. 7(a), which also includes plots for another two oy values (270
and 330 MPa). Comparing these two plots with the “correct” one,
and applying Eq. (4), leads to values for g of 0.820 and 0.855. If
the 300 MPa plot were an experimental one, then these values of
g would characterize the goodness of fit for the 270 and 330 MPa
trial values. This operation can, of course, be carried out for a se-
ries of trial values. Fig. 7(b) shows the corresponding set of g val-
ues, for the three indenter shapes. It naturally has a value of 1 for
oy=300MPa, and falls away on either side. With an experimen-
tal plot as the “reference case”, g will never reach 1 for any trial
value, but Fig. 7(b) gives an indication of the expected sensitivity.
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Fig. 7. FEM outcomes for a material exhibiting no work hardening and a “correct”
yield stress of 300 MPa: (a) load-displacement plots for a 4 mm diameter sphere,
using this value and two others, and (b) plot of g as a function of the trial value,
over a range either side of the “correct” one, for three indenter shapes.

It does offer encouragement, in the sense that, in all cases, g falls
off quite sharply with relatively small deviations from the “correct”
value. It’s also clear that the drop-off is sharpest with the punch
and most gradual with the cone. This would not have been easy
to predict, although it can be rationalized in terms of the plastic
strain fields - for example, the high plastic strains (in a relatively
large volume) around the edge of the punch will tend to make the
load-displacement plot more sensitive to the yield stress. However,
as was noted in Section 3.4, there are problems associated with
usage of any indenter having “sharp” (ie very high curvature) re-
gions.

4.2. Linear work hardening material

Following a similar procedure, the (“correct”) value of oy is re-
tained at 300 MPa, in combination now with a linear (n=1) work
hardening rate, K, of 1000 MPa. Various trial combinations of oy
and K are now possible, each leading to a particular value of g by
comparing the resultant P(§) plot with that for the “correct” com-
bination. The set of g values obtained by running the model with
a matrix of such trial combinations is represented in Fig. 8(a)-(c),
for sphere, cone and punch. These plots are maps in oy - K space,
with each g value having been put into one of 5 ranges.

It can be seen in Fig. 8(a) and (b) that, envisaged as a 3-D con-
tour plot, there are “ridges” (running through the “correct” value
pair) of pairs with high g values (>0.97) - these are plotted as
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Fig. 8. Outcomes of FEM simulations for indentation into a linear work hardening
material (n=1) with “correct” oy and K values of 300 MPa and 1000 MPa, in the
form of maps in oy - K space, showing the ranges into which the g values fell
for each simulation, for (a) sphere, (b) cone and (c) punch. The dotted lines are
polynomial best fits for the points yielding g values above 0.97.

dotted lines. This is understandable, since, depending on the na-
ture of the strain field (ie the indenter shape), the effect of having
a oy value below the “correct” one can be at least partly compen-
sated by having a K value above the “correct” one (and vice versa).
If only one such plot were available, there would be uncertainty
about the validity of any inferred pair of values. However, an ex-
tra degree of freedom is injected by repeating the operation with
a significantly different indenter shape. It can be seen in Fig. 8(b)
that a similar “ridge” of high-g values appears for the cone, but it is
inclined differently to the axes. These “ridges” intersect at the “cor-
rect” pair of values, which could therefore be obtained as the solu-
tion to the two polynomial expressions fitted to the sets of “high g”
points. This potentially constitutes a methodology for establishing
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[ 060g<082 | 082<g<087| | 087<g<092] | 092<g<097| 097g<1 |
1200 | 0.604 1200 | 0672 | 0.662 | 0.652 | 0.643 | 0.634 1200
E 1100 | 0645 | 0.631 | 0617 | 0.604 1100 | 0.728 | 0.716 | 0.704 | 0.693 | 0.683 1100
= 1000 | 0.693 | 0.676 | 0.660 | 0.645 | 0.631 1000 | 0.792 | 0.779 | 0.766 | 0.753 | 0.741 1000
;2’ 900 | 0.747 | 0.728 | 0.710 | 0.693 | 0.676 900 | 0.867 | 0.851 | 0.837 | 0.822 | 0.808 900
800 | 0.810 | 0.788 | 0.767 | 0.748 | 0.729 800 | 0.955 | 0.937 | 0919 | 0.902 | 0.886 800 | 0.664
n=0.3] 280 290 300 310 320 n=0.3] 280 290 300 310 320 n=0.3] 280 290 300 310 320
1200 | 0.786 | 0.765 | 0.746 | 0.726 | 0.708 1200 | 0.793 | 0.778 | 0.764 | 0.751 | 0.738 1200 | 0.621
E 1100 | 0.832 | 0.809 | 0.787 | 0.767 | 0.747 1100 | 0.852 | 0.836 | 0.820 | 0.806 | 0.791 1100 | 0.694 | 0.658 | 0.625
= 1000 | 0.884 | 0.858 | 0.834 | 0.811 | 0.790 1000 | 0919 | 0.902 | 0.885 | 0.868 | 0.852 1000 | 0.782 | 0.740 | 0.700 | 0.664 | 0.630
; 900 | 0941 [ 0.913 | 0.886 | 0.861 | 0.837 900 | 0.997 | 0.978 | 0.959 | 0.940 | 0.922 900 | 0.887 [ 0.838 | 0.791 | 0.748 | 0.707
800 | 0.994 | 0.973 | 0.944 | 0.916 | 0.889 800 | 0.913 | 0.936 | 0.958 | 0.979 | 0.997 800 | 0.979 | 0.950 | 0.897 | 0.847 | 0.800
| n=0.4] 280 290 300 310 320 | n=0.4] 280 290 300 310 320 | n=0.4] 280 290 300 310 320
1200 | 0.970 | 0941 | 0.913 [ 0.887 | 0.862 1200 | 0914 | 0.895 | 0.878 | 0.860 | 0.844 1200 | 0.929 | 0.880 | 0.833 | 0.787 | 0.745
E 1100 | 0.983 | 0.985 | 0.955 | 0.927 | 0.900 1100 | 0.975 | 0954 | 0.935 | 0.916 | 0.897 1100 | 0.969 | 0.963 [ 0.911 [ 0.861 | 0.813
= 1000 | 0935 [ 0.968 | 1.000 | 0.970 | 0.940 1000 | 0.956 | 0.978 | 1.000 | 0.979 | 0.958 1000 | 0.879 | 0.941 | 1.000 | 0.943 | 0.890
z 900 [ 0883 0918 | 0952 | 0.984 | 0.984 900 [ 0.879 | 0.903 | 0.927 | 0.949 | 0.972 900 | 0.774 [ 0.839 | 0.901 [ 0.960 | 0.970
800 | 0.827 | 0.864 | 0.900 | 0.935 | 0.968 800 | 0.793 | 0.820 | 0.845 | 0.870 | 0.894 800 | 0.663 | 0.728 | 0.793 | 0.857 | 0.916
| n=0.5] 280 290 300 310 320 | n=0.5] 280 290 300 310 320 | n=0.5] 280 290 300 310 320
1200 | 0.864 | 0.900 | 0.934 | 0.968 | 0.998 1200 | 0971 | 0993 | 0.984 | 0.962 | 0.942 1200 | 0.748 | 0.813 | 0.877 | 0.939 | 0.993
E 1100 | 0.824 | 0.861 | 0.897 | 0.932 | 0.965 1100 | 0911 | 0.935 | 0.959 | 0.982 | 0.995 1100 | 0671 | 0.737 | 0.802 | 0.866 | 0.928
= 1000 | 0782 | 0.821 | 0.859 | 0.895 | 0.929 1000 | 0.845 | 0.871 [ 0.896 | 0.921 | 0.944 1000 0657 | 0.722 | 0788 | 0.852
§ 900 | 0.739 | 0.779 | 0.818 | 0.855 | 0.891 900 | 0.771 | 0.799 | 0.826 | 0.852 | 0.877 900 0639 | 0.705 | 0.771
800 | 0.693 | 0.734 | 0.774 | 0.813 | 0.851 800 | 0.691 | 0.720 | 0.749 | 0.777 | 0.804 800 0.620 | 0685
| n=0.6] 280 290 300 310 320 | n=0.6] 280 290 300 310 320 | n=0.6] 280 290 300 310 320
1200 | 0.864 | 0900 | 0.934 | 0.968 | 0.998 1200 | 0.971 | 0.993 | 0.984 | 0.962 | 0.942 1200 | 0.748 | 0.813 | 0.877 | 0.939 | 0.993
;_“? 1100 | 0.824 | 0.861 | 0.897 | 0.932 | 0.965 1100 | 0.911 | 0.935 | 0.959 | 0.982 | 0.995 1100 | 0.671 | 0.737 | 0.802 | 0.866 | 0.928
= 1000 | 0782 | 0.821 | 0.859 | 0.895 | 0.929 1000 | 0.845 | 0.871 | 0.896 | 0.921 | 0.944 1000 0657 | 0.722 | 0.788 | 0.852
; 900 | 0.739 | 0.779 | 0.818 | 0.855 | 0.891 900 | 0771 | 0.799 | 0.826 | 0.852 | 0.877 900 0639 | 0.705 | 0.71
800 | 0693 | 0.734 | 0774 | 0.813 | 0.851 800 | 0.691 [ 0.720 | 0.749 | 0.777 | 0.804 800 0620 | 0685
| n=0.7] 280 290 300 310 320 n=0.7] 280 290 300 310 320 | n=0.7] 280 290 300 310 320
Sphere oy (MPa) Cone oy (MPa) Punch oy (MPa)

Fig. 9. Outcomes of FEM simulations, using spherical, conical and cylindrical (punch) indenters, for a material with “correct” yield stress, work hardening coefficient and

work hardening exponent values of 300 MPa, 1000 MPa and 0.5. These are maps of g values in oy - K space, for five different values of n.

these values accurately, without the need for any complex conver-
gence operations in parameter space.

However, simply taking the solution to be the intersection point
between the lines representing the “high-g ridges” for two differ-
ent shapes is unlikely to be reliable in all cases. This operation dis-
cards much of the g-data, including those defining the ends of the
ridges. Moreover, while a second indenter shape will always tend
to supply different information from the first, the gradients of the
corresponding “ridges” could be similar, introducing large errors
into the location of the “solution point” . This can be seen from the
data for the punch, which produces a ridge with a similar gradient
to that of the sphere, but a much shorter length, which is likely
to be very helpful in obtaining the “best-fit” solution efficiently. In
fact, this “ridge” is so short that only the “correct” parameter pair
gives a value of g above 0.97. This is similar to the characteristics
observed in Fig. 7(b) for the single parameter (oy only) case. Of
course, it's important to appreciate that, when using real experi-
mental data as the “reference” plot, noise will inevitably be intro-
duced (partly because the actual stress-strain relationship may not
conform closely to the assumed functional form) and the solution
algorithm needs to be sufficiently robust to cope with this.

4.3. Power law work hardening

While some materials do exhibit approximately linear work
hardening, at least over a certain strain range, it is often observed
that the work hardening rate falls off at larger strains and a power
law expression (Eq. (1)) is frequently used to represent the be-
havior over the complete strain rage of interest (commonly up to
about 20-30%, at least for ductile metals, although necking (or bar-

reling) often complicates the interpretation of experimental test
data above about 10%). In this case, three parameter values are
required, so a further degree of freedom is introduced into the
problem, and it sounds plausible to expect three different indenter
shapes to be needed in order to converge accurately on a solution.
The three values chosen here for the reference (“correct”) case are
oy =300MPa, K=1000MPa and n=0.5.

An analogous procedure to that in Section 4.2 has been fol-
lowed, with the “g-screening” operation now leading to a 3-D ma-
trix of g values. The behavior follows similar trends to the 2-D
case. Fig. 9 shows g maps in oy-K space, for five different val-
ues of n. The “ridges” of high g combinations are still observed,
with the same tendency for these to be short with the punch. The
“high-g” combinations are now expected to lie in (curved) planes,
rather than ridges. The nature of these planes is slightly more com-
plex to interpret than in the case of the “high-g” ridges in Fig. 8,
but is nevertheless logical. It can be seen that a high value of n
can compensate for having values of both oy and K that are too
high: this is because higher n values lead to the second term in
Eq. (1) being smaller, at all strain levels below 100%. The behavior
will change at strains above this level, but in practice it's proba-
bly reasonable to take something like 30-40% as an extreme upper
limit to the regime that should be explored (or is likely to be of
any interest).

4.4. Solution algorithms using multiple indenter shapes

The observed characteristics give some clear pointers towards
possible algorithms for identifying “best fit” combinations of pa-
rameter values. Equations for lines (2-parameter case) or planes
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[080<g<085 | [ 085<g<090 | 090<g<095 | [ 095>g9<1 ]
1400 [T .72 [0.62]0.85] 0.91 0.44 [0.71]0.88] 0.82 .69 0.64 ]
1300 E 10.57 | 0.81 | 0.95 1 0.68 | 0.80 .70 | 0.65
1200 .74 1053 0.76 | 0.98 10.650.82 | 0.77 .71 0.66
£ 100 49070 [ 0.94 | 1 0.62 0.74 .72 | 0.67
= 1000 4 .65 | 0.89 | 1 0.59 0.72 7. .68
< 900 i [0.56 [ 0.72 069 .74 0.69
800 | I 10.53 ] ( 0.66 .76 | 0.70
700 I 1 0.50 | 0.63 .77 | 0.71
600 . 47 0.60 .78 [ 0.72
m) oy (MPa) m)
1400 761 0.71] .4 .67 | 0.91 1 0.59 0.73 .73 | 0.68
1300 .76 | 0.7 .43 [ 0.64 | 0.87 1 0.57 0.71 ).74 | 0.68 |
1200 [¢ .77 [ 0.7 .40 [ 0.60 [ 0.84 | 055 0.71 | 069 .75 | 0.69
T 10 [« .78 0.72| [0.38]057 [ 0.80 | 053 0.69 | 066 | ( .75 | 0.70
= 1000 [ 7 10.35]0.53[ 0.76 51 0. 76| 0.
= 90 [C .7 10.33 050 | 0.72 | 4 0.62 i
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Fig. 10. Outcomes of FEM simulations of indentation with a 4 mm diameter sphere, using the displacement ranges shown, for a material with “correct” parameter values of
oy =300MPa, K=1000 MPa and n=0.9. These are maps of g values in oy - K space, for three different values of n.

(3-parameter case) could be formulated as best fits through a set
of points in parameter space having g values above a specified cut-
off level. The overall “best fit” parameter combination could then
be the point of intersection of the two lines or the three planes.
This suggests that the number of different indenter shapes will
need to be the same as the number of parameters.

However, while there is some logic to this, it is almost certainly
too simplistic and prone to error. A more robust procedure is likely
to involve creating, for each indenter shape, a “cloud” in parameter
space, comprising a set of (relatively high-g) points, each with its
own g value. On superimposing multiple clouds (indenter shapes),
a “master cloud” can be created (with each point having a g value
given by the average for that point). The solution would then just
be the point in the master cloud with the highest g value, although
it's likely to be helpful to also note the next few parameter combi-
nations in the ranked list of g values.

On this basis, what needs to be specified in advance is: (i) the
set of indenters to use, (ii) the functional form for the constitu-
tive relation and (iii) the range of values for the parameters in
that relation to be used for “g-screening”. There is the issue of
how fine that screening should be, and whether a second (finer)
sweep should be carried out in the vicinity of the “coarse” solution,
but these are computational details. Needless to say, the precision
of the solution will be dependent on the reliability of the experi-
mental load-displacement plots. There will, however, be scope for
cross-checking of inferred parameter values, for example by com-
paring experimental and predicted residual indent shapes and by
carrying out runs with further indenter shapes. Furthermore, the
solution will always come with an associated g value, which can
be used as some sort of indicator of the reliability of the outcome.

4.5. A single run, multi-partitioning approach

The above approach does not really require any particular num-
ber of indenter shapes, but it would appear that, unless there is
only one unknown parameter (yield stress for a perfectly plastic
material), it would be inadvisable to use only one shape. However,
further consideration of this issue suggests that this is not neces-
sarily true. Provided the indenter shape is not self-similar, then
analysis of more than one section of a single load-displacement
plot yields different sets of information, in an analogous way to

using different indenter shapes. This immediately points the way
towards just using a single (spherical) indenter, and a single in-
dentation run, with g-screening operations being carried out on
more than one section of the load-displacement plot. This has ob-
vious attractions, particularly since it allows the problems associ-
ated with all “sharp” indenters (Section 3.4) to be avoided.

The data presented in Fig. 10 suggest that this approach is vi-
able. The figure shows the outcome of a g-screening operation on
a single indentation run to a penetration depth of 100 um, using
a 4mm diameter sphere, for a material with “correct” parameter
values of oy =300MPa, K=1000MPa and n=0.9. These g values
were obtained on sections of the load-displacement plot from the
origin up to 40 pum and from 40 pum up to 80 pum. It can be seen
that this operation, involving study of average g values for the
two scans, allows effective convergence on the “correct” combina-
tion, in a similar way to the usage of different indenter shapes.
The figure also shows the outcome (fourth column) of a single g-
screening operation on the complete 0-80 um plot. It can be seen
that the multiple scan operation does lead to sharper convergence
(more efficient elimination of ambiguity) than a single operation
on the same set of data. Of course, it's important to recognize that
real experimental data will incorporate noise that is absent from
these purely FEM analyses, and also the possibility that the stress-
strain relationship does not accurately fit the assumed functional
form, so this is now investigated using the load-displacement data
obtained for the copper.

5. Application to real experimental data (for copper)

The procedure described in Section 4.5 has been applied to the
indentation data for the copper sample (Fig. 3). FEM runs were car-
ried out, using a matrix of trial values of oy K and n. Of course,
if this were an unknown material, then there might be little or no
prior information available about probable values for these three
parameters, so these runs covered a fairly broad range. The out-
come is shown in Fig. 11. This g-screening operation was carried
out on two sections of the P(§) plot - for displacement ranges of
0-40pm and 40-80pum. These ranges were chosen because: (i)
they need to be significantly different in order to enhance the con-
vergence efficiency, (ii) the early part of the plot (up to around
5um) is unlikely to be very reliable, because these displacements
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[ g<080| | 080<g<085]| | 085<g<090] [ 090<g<095| | 095<g<1 |

240 | 0.614 | 0.564 | 0.522 | 0.485 | 0.454 240 | 0.008 | -0.042 | -0.070 | -0.085 | -0.093 240 | 0.311 | 0.261 | 0.226 | 0.200 | 0.181

E 180 | 0.729 | 0.664 | 0.608 | 0.560 | 0.518 180 | 0.221 | 0.085 | 0.003 | -0.045 | -0.072 180 | 0475 | 0.375 | 0.306 | 0.258 | 0.223
= 120 | 0.889 | 0.796 | 0.722 | 0.658 | 0.602 120 | 0.671 | 0.414 | 0.212 | 0.078 | -0.020 120 | 0.780 | 0.605 | 0.467 | 0.368 | 0.291
; 60 0.896 | 0.953 | 0.866 | 0.783 | 0.712 60 0.693 | 0.936 | 0.683 | 0.494 | 0.370 60 0.794 | 0.944 | 0.775 | 0.638 | 0.541
0 0.612 | 0.771 | 0.907 | 0.949 | 0.859 0 0.195 | 0.383 | 0.676 | 0.931 | 0.685 0 0.404 | 0.577 | 0.792 | 0.940 | 0.772
[n=041] 180 200 220 240 260 [n=01] 180 200 220 240 260 [n=01] 180 200 220 240 260
240 | 0.779 | 0.710 | 0.650 | 0.600 | 0.557 240 | 0435 | 0.327 | 0.256 | 0.208 | 0.017 240 | 0.607 | 0.519 | 0.453 | 0.404 | 0.287

E 180 | 0.889 | 0.798 | 0.726 | 0.665 | 0.613 180 | 0.666 | 0.491 | 0.371 | 0.291 | 0.237 180 | 0.778 | 0.645 | 0.548 | 0.478 | 0.425
= 120 | 0.951 | 0.904 | 0.817 | 0.741 | 0.676 120 | 0.937 | 0.752 | 0.542 | 0.403 | 0.311 120 | 0.944 | 0.828 | 0.679 | 0.572 | 0.493
; 60 0.810 | 0.934 | 0.925 | 0.836 | 0.757 60 0.521 | 0.826 | 0.841 | 0.596 | 0.429 60 0.666 | 0.880 | 0.883 | 0.716 | 0.593
0 0.612 | 0.771 | 0.907 | 0.949 | 0.859 0 0.195 | 0.383 | 0.676 | 0.931 | 0.685 0 0.404 | 0.577 | 0.792 | 0.940 | 0.772

=0.2| 180 200 220 240 260 [n=02] 180 200 220 240 260 [n=0.2] 180 200 220 240 260

240 | 0919 | 0.833 | 0.755 | 0.689 | 0.633 240 | 0.748 | 0.535 | 0.393 | 0.300 | 0.238 240 | 0.834 | 0.684 | 0.574 | 0.495 | 0.436

E 180 | 0.940 | 0.903 | 0.818 | 0.742 | 0.679 180 | 0.984 | 0.729 | 0.528 | 0.395 | 0.308 180 | 0.962 | 0.816 | 0.673 | 0.569 | 0.493
= 120 | 0.863 | 0.957 | 0.889 | 0.803 | 0.730 120 | 0.678 | 0.963 | 0.709 | 0.513 | 0.384 120 | 0.771 | 0.960 | 0.799 | 0.658 | 0.557
; 60 0.748 | 0.886 | 0.956 | 0.873 | 0.789 60 0.397 | 0.686 | 0.946 | 0.693 | 0.501 60 0.572 | 0.786 | 0.951 | 0.783 | 0.645
0 0.612 | 0.771 | 0.907 | 0.949 | 0.859 0 0.195 | 0.383 | 0.676 | 0.931 | 0.685 0 0.404 | 0.577 | 0.792 | 0.940 | 0.772

I n=0.3] 180 200 220 240 260 | n=0.3] 180 200 220 240 260 | n=0.3] 180 200 220 240 260
240 ] 0.926 | 0.925 | 0.839 | 0.761 | 0.761 240 ] 0.928 | 0.774 | 0.559 | 0.416 | 0.322 240 | 0.927 | 0.850 | 0.699 | 0.588 | 0.541

E 180 | 0.865 | 0.954 | 0.886 | 0.801 | 0.801 180 | 0.720 | 0.947 | 0.685 | 0.498 | 0.376 180 | 0.792 | 0.951 | 0.786 | 0.650 | 0.588
= 120 | 0.794 | 0.920 | 0.935 | 0.847 | 0.767 120 | 0.531 | 0.833 | 0.844 | 0.600 | 0.434 120 | 0.663 | 0.877 | 0.890 | 0.724 | 0.601
; 60 0.707 | 0.852 | 0.957 | 0.897 | 0.810 60 0.335 | 0.599 | 0.918 | 0.759 | 0.545 60 0.521 | 0.726 | 0.938 | 0.828 | 0.678
0 0.612 | 0.771 | 0.907 | 0.949 | 0.859 0 0.195 | 0.383 | 0.676 | 0.931 | 0.685 0 0.404 | 0.577 | 0.792 | 0.940 | 0.772

n=0.4] 180 200 220 240 260 [(n=04] 180 200 220 240 260 [n=04] 180 200 220 240 260

240 | 0.847 | 0.950 | 0.899 | 0.813 | 0.739 240 | 0.696 | 0.970 | 0.706 | 0.513 | 0.386 240 | 0.771 | 0.960 | 0.802 | 0.663 | 0.562

§ 180 | 0.797 | 0.922 | 0.932 | 0.844 | 0.765 180 | 0.551 | 0.868 | 0.820 | 0.590 | 0.436 180 | 0.674 | 0.895 | 0.876 | 0.717 | 0.600
= 120 | 0.741 | 0.880 | 0.956 | 0.878 | 0.794 120 | 0417 [ 0.707 | 0.946 | 0.687 | 0.498 120 | 0.579 | 0.793 | 0.951 | 0.782 | 0.646
; 60 0.680 | 0.829 | 0.947 | 0.913 | 0.824 60 0.297 | 0.542 | 0.862 | 0.808 | 0.578 60 0.489 | 0.685 | 0.905 | 0.860 | 0.701
0 0.612 | 0.734 | 0.907 | 0.949 | 0.859 0 0.195 | 0.383 | 0.676 | 0.931 | 0.685 0 0.404 | 0.558 | 0.792 | 0.940 | 0.772

n=05| 180 200 220 240 260 n=05| 180 200 220 240 260 n=05| 180 200 220 240 260

&= 0-40 um oy (MPa) §=40-80 ym oy (MPa) Average oy (MPa)

Fig. 11. Outcomes of FEM simulations, using the spherical indenter only and comparing predictions with experimental data over the two displacement ranges shown. These

are maps of g values in oy - K space, for five different values of n.

are not much greater than the surface roughness and (iii) at large
displacements (>~80um), the strains in many regions are likely to
be well beyond the range of interest, although the data in Fig. 7 il-
lustrate that the strain range in which the P(§) data are being
strongly affected will be well below the peak values.

It can be seen in Fig. 11 that carrying out the g-screening on
two different sections of the load-displacement plot does assist in
the convergence, and at least partly removes the ambiguity that
would result from a single scan. In this particular case, however,
it does not lead to a single combination of parameter values that
stands out as giving optimum agreement and no combination gives
a g value very close to unity. This is unsurprising, since, as was
mentioned in Section 2.2, the shape of the stress-strain curve does
not, in this case, conform closely to any plot obtainable using
Eq. (1). Nevertheless, the operation does lead to a good represen-
tation of the actual stress-strain relationship. It can be seen in
Fig. 11 that there are several parameter combinations for which
the average of the two comparisons yields a g value around
the maximum (of about 0.960). For two of these (oy =200 MPa,
K=120MPa, n=0.3 and oy=200MPa, K=240MPa, n=0.5),
Fig. 12 compares corresponding predictions with the experimen-
tal data for (a) the load-displacement plot and (b) the stress-
strain curve. The latter shows that, while neither inferred plot con-
forms closely with the experimental one (and indeed no plot of
Eq. (1) can do this), they are both giving fairly accurate descrip-
tions. It is reasonable to suppose that, for a material with a stress-
strain curve conforming closely to the assumed functional form,
the (unique) solution, in the form of the three parameter values,
could be accurately obtained using this methodology. Of course,

further detailed investigations are needed in order to confirm
this.

6. Conclusions

The following conclusions can be drawn from this work:

(a) The methodology of repeated FEM simulation of the inden-
tation process, with systematic comparison between experi-
mental and predicted outcomes, is basically sound and can
in principle be used to infer a range of material proper-
ties. While the present work is focused on plasticity, the
approach should be applicable to other properties, such as
those related to creep. It will always be necessary to ascribe
a functional form to the constitutive relations concerned,
with the objective being to evaluate the parameters in these
equations.

It is apparently necessary, at least in most cases, to carry
out the indentation with more than one indenter shape, in
order to remove the ambiguity that is likely to result from
comparison between experiment and model for a single
shape. However, it is clarified here that, provided the inden-
ter shape is not self-similar, making multiple comparisons
on different sections of the same load-displacement plot is
similar in effect to the use of multiple indenter shapes. The
viability of this procedure has been confirmed, leading to
the attractive possibility of carrying out the experimental in-
vestigation in the form of a single indentation run with a
sphere. A number of important advantages will result from
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Fig. 12. Comparison between experimental data and predictions based on use of
Eq. (1), with the two parameter sets shown (inferred via the g-screening opera-
tion), for (a) the indentation load-displacement plot and (b) the uniaxial stress-
strain curve.

using a relatively large indenter diameter (probably with
mm dimensions).
A methodology has been identified in which a goodness-of-
fit parameter, g, is used to characterise the fidelity of model
predictions, relative to experimental data. An operation of
“g-screening”, involving the creation of a cloud of g values in
parameter space, is used to identify best-fit material prop-
erty parameter combinations. The efficiency of this process,
and confidence in the outcome, is likely to be increased by
use of multiple indenter shapes or, as outlined above, use
of multiple screening runs on different sections of a single
load-displacement plot. The material used in the current in-
vestigation exhibits a stress-strain relationship that does not
conform accurately to a simple functional form, and so could
not be captured to very high precision using this methodol-
ogy (or indeed any similar methodology). Nevertheless, this
g-screening operation did lead to a representation of the
plasticity characteristics that would be adequate for many
purposes.

(d) This work may serve to pave the way towards the develop-
ment of user-friendly software packages, containing built-in
resources for FEM implementation and g-screening opera-
tions, which would require the user only to specify the func-
tional form of the constitutive relation and to input a sin-
gle experimental indentation plot. In fact, there is already a
website available (http://www.simdent.com) where a capa-
bility of this type is available.

—
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