

Deposition of volcanic ash in customised set-up for simulation of a turbine combustion chamber

C. Taltavull , K. A. Roberts, J. Dean, T.W. Clyne

23th September, 2014, Cambridge

C Engineering and Physical Sciences Research Council

1. Selection of Volcanic Ashes

- Particle Size
- Composition
- Glass Content
- \succ T_g / T_m

2. Sources & Characteristics of Ashes being Studied

Volcanic Ash	Particle sizes	Composition	Amorphous content (%)	<i>Τ</i> _g / <i>Τ</i> _m (°C)
Laki	25/50/90 µm	Si/Ti/Fe/Mg (oxides)	70	600 / 1100
Askja			100	700 / -
Hekla			100	1250 / -
Eldgja			23	700 / 1000
Eyjafjallajöku	l i i i i i i i i i i i i i i i i i i i		40	700 / 1000

SEM micrographs of polished sections, showing different porosity levels

3. Compositions of the Selected Ashes

All broadly similar, but: • Laki high in Fe • Hekla & Askja high in Si

Difficult to relate these compositions to features such as glass content or T_g , or even to the crystalline phases that form.

However, note <u>basicity index</u> (Ca + Mg + Fe) / (Si + Al):

```
Laki ~ 1.0; Hekla ~ 0.1;
Eyja ~ 0.3; Askja ~ 0.1;
Eldgja ~ 0.7
```

ie most are rather acidic,
except Laki & Eldgja.
(Generally, basic slags have lower "melting temperatures")

4. Study of Ash Particle Deposition Rates

5. Conditions for Ash Particle Injection Experiments

Conditions	Power (kW)	Argon (L/min)	Hydrogen (L/min)	Current (A)	Pressure chamber
1	30	50	4	750	120 mbar
2	40	50	7	800	120 mbar
3	40	50	7	800	80 mbar

Axial Gas Temperature Profile along Tube

UNIVERSITY OF CAMBRIDGE

The Gordon Laboratory

7. Observed Splat Morphologies - 25 µm Particles

Laki (70 % glass)

Gas *T* at substrate

975°C

1225°C

Hekla (100 % glass)

UNIVERSITY OF CAMBRIDGE

The Gordon Laboratory

8. Observed Splat Morphologies - 50 µm Particles

Laki (70 % glass)

Gas *T* at substrate

975°C

Hekla (100 % glass)

6. Evaluation of T_{q} and T_{m} via Dilatometry of Powders

All gas *T*'s above T_{g} , highest above T_{m}

All gas *T*'s below T_g , highest ~ T_g

9. Ash Particle Deposition Rates (obtained by Weighing)

Laki: uniformly high deposition rates - most particles (including 50 μ m) soften enough to adhere, even with lower gas *T*. Possibly losing some small particles via the gas streamlines. Hekla: little adhesion at lower gas T's few particles reaching the (high) T_g . For the highest gas T, more particles are softening, particularly the smaller ones.

10. Summary

- > Laki, Eldgja, Hekla and Askja VA's cover a suitably wide range of composition, glass content, T_g and T_m values: the project will focus on these.
- Initial deposition rate trails, using a plasma torch-based Combustion Chamber Simulation Rig, have involved Laki and Hekla ashes, with 2 particle size ranges (centred on 25 µm & 50 µm) and 3 gas temperature profiles (giving 975°C, 1150°C and 1225°C on passing the substrate).
- Laki, which is 70% glass, has a low T_g (~600°C), such that ~ all particles softened for all gas temperatures, giving a uniformly high deposition rate (~50%). Slightly lower rates for 25 µm may be due to lower impact rates.
- Hekla, which is 100% glass, has a high T_g (~1250°C), such that few particles softened / adhered for the lower gas T's. For the highest T, however, softening and adhesion did occur, particularly with small particles.
- These, and future, observations will be correlated with predictions from a numerical CFD model, which will shortly be deployed.