

Adhesion of Volcanic Ash Particles under Controlled Conditions and Implications for Their Deposition in Gas turbines

C. Taltavull, J. Dean, T.W. Clyne

14th December, 2015, Cambridge

1. The Volcanic Ash Problem

2. Laki Volcanic Ash: Composition and Particle Size

3. Laki Volcanic Ash: Amorphous Content and Softening T

Crystalline/amorphous content

T_g & **T**_m

80% amorphous 20 % crystalline (60 % Clinopyroxene+ 40% Anorthite)

4. Laki Volcanic Ash: distribution of amorphous content

5. Experimental Approach to Exploring Adhesion of VA

Control over:

that Adhere to it

6. CFD Modeling: Velocity and Thermal Fields

7. Measurement of Deposition Rate for Laki VA

8. CFD Modeling: Particle Histories during Flight

Particle Thermal Histories

Particle Velocities Histories

9. CFD Modeling: Particle Striking the substrate

10. Correlation with Experimental Adhesion Characteristics

Particle Temperature influence

Particle Velocity Influence

- Deposition Rate Experiments, in combination with CFD Modeling, have been used to obtain insights into factors affecting adhesion of a typical VA (Laki)
- > Particles only need to be > T_g in order to be likely to adhere (and this temperature is often well below T_m)
- Particle Size strongly affects T and V histories: small (<~few µm) particles don't strike substrates and large ones (>~50 µm) don't get hot enough, so intermediate sizes (~ 10-30 µm) are of most concern
- Extrapolation of this methodology to a range of VAs could provide a framework for assessment and prediction of the likelihood of adhesion of these particles into real jet engines.